Wednesday, September 24, 2025

Formula on Mathematics

 


đŸ’Ĩ āϟাāϰ্āĻ—েāϟ: ā§Ēā§­ āĻ“ ā§Ē⧝āϤāĻŽ āĻŦিāϏিāĻāϏ!

đŸŽ¯ āĻāĻ• āύāϜāϰে āĻ—āĻŖিāϤেāϰ āϏāĻ•āϞ āϏূāϤ্āϰ-

✅ āĻŦীāϜāĻ—াāĻŖিāϤিāĻ• āϏূāϤ্āϰাāĻŦāϞী

1.🚩 (a+b)²= a²+2ab+b²

2.🚩 (a+b)²= (a-b)²+4ab

3.🚩 (a-b)²= a²-2ab+b²

4.🚩 (a-b)²= (a+b)²-4ab

5.🚩 a² + b²= (a+b)²-2ab.

6.🚩 a² + b²= (a-b)²+2ab.

7.🚩 a²-b²= (a +b)(a -b)

8.🚩 2(a²+b²)= (a+b)²+(a-b)²

9.🚩 4ab = (a+b)²-(a-b)²

10.🚩 ab = {(a+b)/2}²-{(a-b)/2}²

11.🚩 (a+b+c)² = a²+b²+c²+2(ab+bc+ca)

12.🚩 (a+b)³ = a³+3a²b+3ab²+b³

13.🚩 (a+b)³ = a³+b³+3ab(a+b)

14.🚩 a-b)³= a³-3a²b+3ab²-b³

15.🚩 (a-b)³= a³-b³-3ab(a-b)

16.🚩 a³+b³= (a+b) (a²-ab+b²)

17.🚩 a³+b³= (a+b)³-3ab(a+b)

18.🚩 a³-b³ = (a-b) (a²+ab+b²)

19.🚩 a³-b³ = (a-b)³+3ab(a-b)

20. (a² + b² + c²) = (a + b + c)² – 2(ab + bc + ca)

21.🚩 2 (ab + bc + ca) = (a + b + c)² – (a² + b² + c²)

22.🚩 (a + b + c)³ = a³ + b³ + c³ + 3 (a + b) (b + c) (c + a)

23.🚩 a³ + b³ + c³ – 3abc =(a+b+c)(a² + b²+ c²–ab–bc– ca)

24.🚩 a3 + b3 + c3 – 3abc =½ (a+b+c) { (a–b)²+(b–c)²+(c–a)²}

25.🚩(x + a) (x + b) = x² + (a + b) x + ab

26.🚩 (x + a) (x – b) = x² + (a – b) x – ab

27.🚩 (x – a) (x + b) = x² + (b – a) x – ab

28.🚩 (x – a) (x – b) = x² – (a + b) x + ab

29.🚩 (x+p) (x+q) (x+r) = x³ + (p+q+r) x² + (pq+qr+rp) x +pqr

30.🚩 bc (b-c) + ca (c- a) + ab (a - b) = - (b - c) (c- a) (a - b)

31.🚩 a² (b- c) + b² (c- a) + c² (a - b) = -(b-c) (c-a) (a - b)

32.🚩 a (b² - c²) + b (c² - a²) + c (a² - b²) = (b - c) (c- a) (a - b)

33.🚩 a³ (b - c) + b³ (c-a) +c³ (a -b) =- (b-c) (c-a) (a - b)(a + b + c)

34.🚩 b²-c² (b²-c²) + c²a²(c²-a²)+a²b²(a²-b²)=-(b-c) (c-a) (a-b) (b+c) (c+a) (a+b)

35.🚩 (ab + bc+ca) (a+b+c) - abc = (a + b)(b + c) (c+a)

36.🚩 (b + c)(c + a)(a + b) + abc = (a + b +c) (ab + bc + ca)

_____________________________________________

đŸŽ¯āφāϝ়āϤāĻ•্āώেāϤ্āϰ

1.āφāϝ়āϤāĻ•্āώেāϤ্āϰেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = (āĻĻৈāϰ্āϘ্āϝ × āĻĒ্āϰāϏ্āĻĨ) āĻŦāϰ্āĻ— āĻāĻ•āĻ•

2.āφāϝ়āϤāĻ•্āώেāϤ্āϰেāϰ āĻĒāϰিāϏীāĻŽা = 2 (āĻĻৈāϰ্āϘ্āϝ+āĻĒ্āϰāϏ্āĻĨ)āĻāĻ•āĻ•

3.āφāϝ়āϤāĻ•্āώেāϤ্āϰেāϰ āĻ•āϰ্āĻŖ = √(āĻĻৈāϰ্āϘ্āϝ²+āĻĒ্āϰāϏ্āĻĨ²)āĻāĻ•āĻ•

4.āφāϝ়āϤāĻ•্āώেāϤ্āϰেāϰ āĻĻৈāϰ্āϘ্āϝ= āĻ•্āώেāϤ্āϰāĻĢāϞ÷āĻĒ্āϰāϏ্āϤ āĻāĻ•āĻ•

5.āφāϝ়āϤāĻ•্āώেāϤ্āϰেāϰ āĻĒ্āϰāϏ্āϤ= āĻ•্āώেāϤ্āϰāĻĢāϞ÷āĻĻৈāϰ্āϘ্āϝ āĻāĻ•āĻ•

_____________________________________________

đŸŽ¯āĻŦāϰ্āĻ—āĻ•্āώেāϤ্āϰ

1.āĻŦāϰ্āĻ—āĻ•্āώেāϤ্āϰেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = (āϝে āĻ•োāύ āĻāĻ•āϟি āĻŦাāĻšুāϰ āĻĻৈāϰ্āϘ্āϝ)² āĻŦāϰ্āĻ— āĻāĻ•āĻ•

2.āĻŦāϰ্āĻ—āĻ•্āώেāϤ্āϰেāϰ āĻĒāϰিāϏীāĻŽা = 4 × āĻāĻ• āĻŦাāĻšুāϰ āĻĻৈāϰ্āϘ্āϝ āĻāĻ•āĻ•

3.āĻŦāϰ্āĻ—āĻ•্āώেāϤ্āϰেāϰ āĻ•āϰ্āĻŖ=√2 × āĻāĻ• āĻŦাāĻšুāϰ āĻĻৈāϰ্āϘ্āϝ āĻāĻ•āĻ•

4.āĻŦāϰ্āĻ—āĻ•্āώেāϤ্āϰেāϰ āĻŦাāĻšু=√āĻ•্āώেāϤ্āϰāĻĢāϞ āĻŦা āĻĒāϰিāϏীāĻŽা÷4 āĻāĻ•

_____________________________________________

đŸŽ¯āϤ্āϰিāĻ­ূāϜ

1.āϏāĻŽāĻŦাāĻšু āϤ্āϰিāĻ­ূāϜেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = √¾×(āĻŦাāĻšু)²

2.āϏāĻŽāĻŦাāĻšু āϤ্āϰিāĻ­ূāϜেāϰ āωāϚ্āϚāϤা = √3/2×(āĻŦাāĻšু)

3.āĻŦিāώāĻŽāĻŦাāĻšু āϤ্āϰিāĻ­ুāϜেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = √s(s-a) (s-b) (s-c)

āĻāĻ–াāύে a, b, c āϤ্āϰিāĻ­ুāϜেāϰ āϤিāύāϟি āĻŦাāĻšুāϰ āĻĻৈāϰ্āϘ্āϝ, s=āĻ…āϰ্āϧāĻĒāϰিāϏীāĻŽা

★āĻĒāϰিāϏীāĻŽা 2s=(a+b+c)

4āϏাāϧাāϰāĻŖ āϤ্āϰিāĻ­ূāϜেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = ½

(āĻ­ূāĻŽি×āωāϚ্āϚāϤা) āĻŦāϰ্āĻ— āĻāĻ•āĻ•

5.āϏāĻŽāĻ•োāĻŖী āϤ্āϰিāĻ­ূāϜেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = ½(a×b)

āĻāĻ–াāύে āϤ্āϰিāĻ­ুāϜেāϰ āϏāĻŽāĻ•োāĻŖ āϏংāϞāĻ—্āύ āĻŦাāĻšুāĻĻ্āĻŦāϝ় a āĻāĻŦং b.

6.āϏāĻŽāĻĻ্āĻŦিāĻŦাāĻšু āϤ্āϰিāĻ­ূāϜেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = 2√4b²-a²/4 āĻāĻ–াāύে, a= āĻ­ূāĻŽি; b= āĻ…āĻĒāϰ āĻŦাāĻšু।

7.āϤ্āϰিāĻ­ুāϜেāϰ āωāϚ্āϚāϤা = 2(āĻ•্āώেāϤ্āϰāĻĢāϞ/āĻ­ূāĻŽি)

8.āϏāĻŽāĻ•োāĻŖী āϤ্āϰিāĻ­ুāϜেāϰ āĻ…āϤিāĻ­ুāϜ =√ āϞāĻŽ্āĻŦ²+āĻ­ূāĻŽি²

9.āϞāĻŽ্āĻŦ =√āĻ…āϤিāĻ­ূāϜ²-āĻ­ূāĻŽি²

10.āĻ­ূāĻŽি = √āĻ…āϤিāĻ­ূāϜ²-āϞāĻŽ্āĻŦ²

11.āϏāĻŽāĻĻ্āĻŦিāĻŦাāĻšু āϤ্āϰিāĻ­ুāϜেāϰ āωāϚ্āϚāϤা = √b² - a²/4

āĻāĻ–াāύে a= āĻ­ূāĻŽি; b= āϏāĻŽাāύ āĻĻুāχ āĻŦাāĻšুāϰ āĻĻৈāϰ্āϘ্āϝ।

12.★āϤ্āϰিāĻ­ুāϜেāϰ āĻĒāϰিāϏীāĻŽা=āϤিāύ āĻŦাāĻšুāϰ āϏāĻŽāώ্āϟি

_____________________________________________

đŸŽ¯āϰāĻŽ্āĻŦāϏ

1.āϰāĻŽ্āĻŦāϏেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = ½× (āĻ•āϰ্āĻŖāĻĻুāχāϟিāϰ āĻ—ুāĻŖāĻĢāϞ)

2.āϰāĻŽ্āĻŦāϏেāϰ āĻĒāϰিāϏীāĻŽা = 4× āĻāĻ• āĻŦাāĻšুāϰ āĻĻৈāϰ্āϘ্āϝ

____________________________________________

đŸŽ¯āϏাāĻŽাāύ্āϤāϰিāĻ•

1.āϏাāĻŽাāύ্āϤāϰিāĻ•েāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = āĻ­ূāĻŽি × āωāϚ্āϚāϤা =

2.āϏাāĻŽাāύ্āϤāϰিāĻ•েāϰ āĻĒāϰিāϏীāĻŽা = 2×(āϏāύ্āύিāĻšিāϤ āĻŦাāĻšুāĻĻ্āĻŦāϝ়েāϰ āϏāĻŽāώ্āϟি)

_____________________________________________

đŸŽ¯āϟ্āϰাāĻĒিāϜিāϝ়াāĻŽ

1. āϟ্āϰাāĻĒিāϜিāϝ়াāĻŽেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ =½×(āϏāĻŽাāύ্āϤāϰাāϞ āĻŦাāĻšু āĻĻুāχāϟিāϰ āϝােāĻ—āĻĢāϞ)×āωāϚ্āϚāϤা

_____________________________________________

āϘāύāĻ•

1.āϘāύāĻ•েāϰ āϘāύāĻĢāϞ = (āϝেāĻ•োāύ āĻŦাāĻšু)³ āϘāύ āĻāĻ•āĻ•

2.āϘāύāĻ•েāϰ āϏāĻŽāĻ—্āϰāϤāϞেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = 6× āĻŦাāĻšু² āĻŦāϰ্āĻ— āĻāĻ•āĻ•

3.āϘāύāĻ•েāϰ āĻ•āϰ্āĻŖ = √3×āĻŦাāĻšু āĻāĻ•āĻ•

_____________________________________________

đŸŽ¯āφāϝ়āϤāϘāύāĻ•

1.āφāϝ়āϤāϘāύāĻ•েāϰ āϘāύāĻĢāϞ = (āĻĻৈā§°্āϘা×āĻĒ্āϰāϏ্āϤ×āωāϚ্āϚāϤা) āϘāύ āĻāĻ•āĻ•

2.āφāϝ়āϤāϘāύāĻ•েāϰ āϏāĻŽāĻ—্āϰāϤāϞেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = 2(ab + bc + ca) āĻŦāϰ্āĻ— āĻāĻ•āĻ•

[ āϝেāĻ–াāύে a = āĻĻৈāϰ্āϘ্āϝ b = āĻĒ্āϰāϏ্āϤ c = āωāϚ্āϚāϤা ]

3.āφāϝ়āϤāϘāύāĻ•েāϰ āĻ•āϰ্āĻŖ = √a²+b²+c² āĻāĻ•āĻ•

4. āϚাāϰি āĻĻেāĻ“āϝ়াāϞেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = 2(āĻĻৈāϰ্āϘ্āϝ + āĻĒ্āϰāϏ্āĻĨ)×āωāϚ্āϚāϤা

_____________________________________________

đŸŽ¯āĻŦৃāϤ্āϤ

1.āĻŦৃāϤ্āϤেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = Ī€r²=22/7r² {āĻāĻ–াāύে Ī€=āϧ্āϰুāĻŦāĻ• 22/7, āĻŦৃāϤ্āϤেāϰ āĻŦ্āϝাāϏাāϰ্āϧ= r}

2. āĻŦৃāϤ্āϤেāϰ āĻĒāϰিāϧি = 2Ī€r

3. āĻ—োāϞāĻ•েāϰ āĻĒৃāώ্āĻ āϤāϞেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = 4Ī€r² āĻŦāϰ্āĻ— āĻāĻ•āĻ•

4. āĻ—োāϞāĻ•েāϰ āφāϝ়āϤāύ = 4Ī€r³÷3 āϘāύ āĻāĻ•āĻ•

5. h āωāϚ্āϚāϤাāϝ় āϤāϞāϚ্āϚেāĻĻে āĻ‰ā§ŽāĻĒāύ্āύ āĻŦৃāϤ্āϤেāϰ āĻŦ্āϝাāϏাāϰ্āϧ = √r²-h² āĻāĻ•āĻ•

6.āĻŦৃāϤ্āϤāϚাāĻĒেāϰ āĻĻৈāϰ্āϘ্āϝ s=Ī€rθ/180° ,

āĻāĻ–াāύে θ =āĻ•োāĻŖ

_____________________________________________

đŸŽ¯āϏāĻŽāĻŦৃāϤ্āϤāĻ­ূāĻŽিāĻ• āϏিāϞিāύ্āĻĄাāϰ / āĻŦেāϞāύ

āϏāĻŽāĻŦৃāϤ্āϤāĻ­ূāĻŽিāĻ• āϏিāϞিāύ্āĻĄাāϰেāϰ āĻ­ূāĻŽিāϰ āĻŦ্āϝাāϏাāϰ্āϧ r āĻāĻŦং āωāϚ্āϚāϤা h āφāϰ āĻšেāϞাāύো āϤāϞেāϰ āωāϚ্āϚāϤা l āĻšāϞে,

1.āϏিāϞিāύ্āĻĄাāϰেāϰ āφāϝ়āϤāύ = Ī€r²h

2.āϏিāϞিāύ্āĻĄাāϰেāϰ āĻŦāĻ•্āϰāϤāϞেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ (āϏিāĻāϏāĻ) = 2Ī€rh।

3.āϏিāϞিāύ্āĻĄাāϰেāϰ āĻĒৃāώ্āĻ āϤāϞেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ (āϟিāĻāϏāĻ) = 2Ī€r (h + r)

_____________________________________________

đŸŽ¯āϏāĻŽāĻŦৃāϤ্āϤāĻ­ূāĻŽিāĻ• āĻ•োāĻŖāĻ•

āϏāĻŽāĻŦৃāϤ্āϤāĻ­ূāĻŽিāĻ• āĻ­ূāĻŽিāϰ āĻŦ্āϝাāϏাāϰ্āϧ r āĻāĻŦং āωāϚ্āϚāϤা h āφāϰ āĻšেāϞাāύো āϤāϞেāϰ āωāϚ্āϚāϤা l āĻšāϞে,

1.āĻ•োāĻŖāĻ•েāϰ āĻŦāĻ•্āϰāϤāϞেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ= Ī€rl āĻŦāϰ্āĻ— āĻāĻ•āĻ•

2.āĻ•োāĻŖāĻ•েāϰ āϏāĻŽāϤāϞেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ= Ī€r(r+l) āĻŦāϰ্āĻ— āĻāĻ•āĻ•

3.āĻ•োāĻŖāĻ•েāϰ āφāϝ়āϤāύ= ⅓Ī€r²h āϘāύ āĻāĻ•āĻ•

✮āĻŦāĻšুāĻ­ুāϜেāϰ āĻ•āϰ্āĻŖেāϰ āϏংāĻ–্āϝা= n(n-3)/2

✮āĻŦāĻšুāĻ­ুāϜেāϰ āĻ•োāĻŖāĻ—ুāϞিāϰ āϏāĻŽāώ্āϟি=(2n-4)āϏāĻŽāĻ•োāĻŖ

āĻāĻ–াāύে n=āĻŦাāĻšুāϰ āϏংāĻ–্āϝা

★āϏুāώāĻŽ āĻŦāĻšুāĻ­ুāϜ āĻāϰ āĻ•্āώেāϤ্āϰে

āĻ…āύ্āϤঃāĻ•োāĻŖ + āĻŦāĻšিঃāĻ•োāĻŖ=180°

āĻŦাāĻšু āϏংāĻ–্āϝা=360°/āĻŦāĻšিঃ āĻ•োāĻŖ

★āϚāϤুāϰ্āĻ­ুāϜেāϰ āĻĒāϰিāϏীāĻŽা=āϚাāϰ āĻŦাāĻšুāϰ āϏāĻŽāώ্āϟি

_____________________________________________

đŸŽ¯āϤ্āϰিāĻ•োāĻŖāĻŽিāϤিāϰ āϏূāϤ্āϰাāĻŦāϞীঃ

1. sinθ=⤞āĻŽ্āĻŦ/āĻ…āϤিāĻ­ূāϜ

2. cosθ=āĻ­ূāĻŽি/āĻ…āϤিāĻ­ূāϜ

3. taneθ=⤞āĻŽ্āĻŦ/āĻ­ূāĻŽি

4. cotθ=āĻ­ূāĻŽি/āϞāĻŽ্āĻŦ

5. secθ=āĻ…āϤিāĻ­ূāϜ/āĻ­ূāĻŽি

6. cosecθ=āĻ…āϤিāĻ­ূāϜ/āϞāĻŽ্āĻŦ

7. sinθ=1/cosecθ, cosecθ=1/sinθ

8. cosθ=1/secθ, secθ=1/cosθ

9. tanθ=1/cotθ, cotθ=1/tanθ

10. sin²Î¸ + cos²Î¸= 1

11. sin²Î¸ = 1 - cos²Î¸

12. cos²Î¸ = 1- sin²Î¸

13. sec²Î¸ - tan²Î¸ = 1

14. sec²Î¸ = 1+ tan²Î¸

15. tan²Î¸ = sec²Î¸ - 1

16, cosec²Î¸ - cot²Î¸ = 1

17. cosec²Î¸ = cot²Î¸ + 1

18. cot²Î¸ = cosec²Î¸ - 1

_____________________________________________

đŸŽ¯ āĻŦিāϝ়ােāĻ—েāϰ āϏূāϤ্āϰাāĻŦāϞি

1. āĻŦিāϝ়ােāϜāύ-āĻŦিāϝ়োāϜ্āϝ =āĻŦিāϝ়োāĻ—āĻĢāϞ।

2.āĻŦিāϝ়ােāϜāύ=āĻŦিāϝ়ােāĻ—āĻĢ + āĻŦিāϝ়ােāϜ্āϝ

3.āĻŦিāϝ়ােāϜ্āϝ=āĻŦিāϝ়ােāϜāύ-āĻŦিāϝ়ােāĻ—āĻĢāϞ

_____________________________________________

đŸŽ¯āĻ—ুāĻŖেāϰ āϏূāϤ্āϰাāĻŦāϞি

1.āĻ—ুāĻŖāĻĢāϞ =āĻ—ুāĻŖ্āϝ × āĻ—ুāĻŖāĻ•

2.āĻ—ুāĻŖāĻ• = āĻ—ুāĻŖāĻĢāϞ ÷ āĻ—ুāĻŖ্āϝ

3.āĻ—ুāĻŖ্āϝ= āĻ—ুāĻŖāĻĢāϞ ÷ āĻ—ুāĻŖāĻ•

_____________________________________________

đŸŽ¯āĻ­াāĻ—েāϰ āϏূāϤ্āϰাāĻŦāϞি

āύিঃāĻļেāώে āĻŦিāĻ­াāϜ্āϝ āύা āĻšāϞে।

1.āĻ­াāϜ্āϝ= āĻ­াāϜāĻ• × āĻ­াāĻ—āĻĢāϞ + āĻ­াāĻ—āĻļেāώ।

2.āĻ­াāϜāĻ•= (āĻ­াāϜ্āϝ— āĻ­াāĻ—āĻļেāώ) ÷ āĻ­াāĻ—āĻĢāϞ।

3.āĻ­াāĻ—āĻĢāϞ = (āĻ­াāϜ্āϝ — āĻ­াāĻ—āĻļেāώ)÷ āĻ­াāϜāĻ•।

*āύিঃāĻļেāώে āĻŦিāĻ­াāϜ্āϝ āĻšāϞে।

4.āĻ­াāϜāĻ•= āĻ­াāϜ্āϝ÷ āĻ­াāĻ—āĻĢāϞ।

5.āĻ­াāĻ—āĻĢāϞ = āĻ­াāϜ্āϝ ÷ āĻ­াāϜāĻ•।

6.āĻ­াāϜ্āϝ = āĻ­াāϜāĻ• × āĻ­াāĻ—āĻĢāϞ।

_____________________________________________

đŸŽ¯āĻ­āĻ—্āύাংāĻļেāϰ āϞ.āϏা.āĻ—ু āĻ“ āĻ—.āϏা.āĻ—ু āϏূāϤ্āϰাāĻŦāϞী 

1.āĻ­āĻ—্āύাংāĻļেāϰ āĻ—.āϏা.āĻ—ু = āϞāĻŦāĻ—ুāϞােāϰ āĻ—.āϏা.āĻ—ু / āĻšāϰāĻ—ুāϞােāϰ āϞ.āϏা.āĻ—ু

2.āĻ­āĻ—্āύাংāĻļেāϰ āϞ.āϏা.āĻ—ু =āϞāĻŦāĻ—ুāϞােāϰ āϞ.āϏা.āĻ—ু /āĻšāϰāĻ—ুāϞাāϰ āĻ—.āϏা.āĻ—ু

3.āĻ­āĻ—্āύাংāĻļāĻĻ্āĻŦāϝ়েāϰ āĻ—ুāĻŖāĻĢāϞ = āĻ­āĻ—্āύাংāĻļāĻĻ্āĻŦāϝ়েāϰ āϞ.āϏা.āĻ—ু × āĻ­āĻ—্āύাংāĻļāĻĻ্āĻŦāϝ়েāϰ āĻ—.āϏা.āĻ—ু.

_____________________________________________

đŸŽ¯āĻ—āĻĄ় āύিāϰ্āĻŖāϝ় 

1.āĻ—āĻĄ় = āϰাāĻļি āϏāĻŽāώ্āϟি /āϰাāĻļি āϏংāĻ–্āϝা

2.āϰাāĻļিāϰ āϏāĻŽāώ্āϟি = āĻ—āĻĄ় ×āϰাāĻļিāϰ āϏংāĻ–্āϝা

3.āϰাāĻļিāϰ āϏংāĻ–্āϝা = āϰাāĻļিāϰ āϏāĻŽāώ্āϟি ÷ āĻ—āĻĄ়

4.āφāϝ়েāϰ āĻ—āĻĄ় = āĻŽােāϟ āφāϝ়েāϰ āĻĒāϰিāĻŽাāĻŖ / āĻŽােāϟ āϞােāĻ•েāϰ āϏংāĻ–্āϝা

5.āϏংāĻ–্āϝাāϰ āĻ—āĻĄ় = āϏংāĻ–্āϝাāĻ—ুāϞােāϰ āϝােāĻ—āĻĢāϞ /āϏংāĻ–্āϝাāϰ āĻĒāϰিāĻŽাāύ āĻŦা āϏংāĻ–্āϝা

6.āĻ•্āϰāĻŽিāĻ• āϧাāϰাāϰ āĻ—āĻĄ় =āĻļেāώ āĻĒāĻĻ +ā§§āĻŽ āĻĒāĻĻ /2

_____________________________________________

đŸŽ¯āϏুāĻĻāĻ•āώাāϰ āĻĒāϰিāĻŽাāύ āύিāϰ্āύāϝ়েāϰ āϏূāϤ্āϰাāĻŦāϞী

1. āϏুāĻĻ = (āϏুāĻĻেāϰ āĻšাāϰ×āφāϏāϞ×āϏāĻŽāϝ়) ÷ā§§ā§Ļā§Ļ

2. āϏāĻŽāϝ় = (100× āϏুāĻĻ)÷ (āφāϏāϞ×āϏুāĻĻেāϰ āĻšাāϰ)

3. āϏুāĻĻেāϰ āĻšাāϰ = (100×āϏুāĻĻ)÷(āφāϏāϞ×āϏāĻŽāϝ়)

4. āφāϏāϞ = (100×āϏুāĻĻ)÷(āϏāĻŽāϝ়×āϏুāĻĻেāϰ āĻšাāϰ)

5. āφāϏāϞ = {100×(āϏুāĻĻ-āĻŽূāϞ)}÷(100+āϏুāĻĻেāϰ āĻšাāϰ×āϏāĻŽāϝ় )

6. āϏুāĻĻাāϏāϞ = āφāϏāϞ + āϏুāĻĻ

7. āϏুāĻĻাāϏāϞ = āφāϏāϞ ×(1+ āϏুāĻĻেāϰ āĻšাāϰ)× āϏāĻŽāϝ় |[āϚāĻ•্āϰāĻŦৃāĻĻ্āϧি āϏুāĻĻেāϰ āĻ•্āώেāϤ্āϰে]।

_____________________________________________

⭕đŸ—Ŗ️āϞাāĻ­-āĻ•্āώāϤিāϰ āĻāĻŦং āĻ•্āϰāϝ়-āĻŦিāĻ•্āϰāϝ়েāϰ āϏূāϤ্āϰাāĻŦāϞী🚩

1. āϞাāĻ­ = āĻŦিāĻ•্āϰāϝ়āĻŽূāϞ্āϝ-āĻ•্āϰāϝ়āĻŽূāϞ্āϝ

2.āĻ•্āώāϤি = āĻ•্āϰāϝ়āĻŽূāϞ্āϝ-āĻŦিāĻ•্āϰāϝ়āĻŽূāϞ্āϝ

3.āĻ•্āϰāϝ়āĻŽূāϞ্āϝ = āĻŦিāĻ•্āϰāϝ়āĻŽূāϞ্āϝ-āϞাāĻ­

āĻ…āĻĨāĻŦা

āĻ•্āϰāϝ়āĻŽূāϞ্āϝ = āĻŦিāĻ•্āϰāϝ়āĻŽূāϞ্āϝ + āĻ•্āώāϤি

4.āĻŦিāĻ•্āϰāϝ়āĻŽূāϞ্āϝ = āĻ•্āϰāϝ়āĻŽূāϞ্āϝ + āϞাāĻ­

āĻ…āĻĨāĻŦা

āĻŦিāĻ•্āϰāϝ়āĻŽূāϞ্āϝ = āĻ•্āϰāϝ়āĻŽূāϞ্āϝ-āĻ•্āώāϤি

_____________________________________________

⭕đŸ—Ŗ️1-100 āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝাāĻŽāύে āϰাāĻ–াāϰ āϏāĻšāϜ āωāĻĒাāϝ়ঃ🚩

āĻļāϰ্āϟāĻ•াāϟ :- 44 -22 -322-321

★1āĻĨেāĻ•ে100āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা=25āϟি

★1āĻĨেāĻ•ে10āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা=4āϟি 2,3,5,7

★11āĻĨেāĻ•ে20āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা=4āϟি 11,13,17,19

★21āĻĨেāĻ•ে30āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা=2āϟি 23,29

★31āĻĨেāĻ•ে40āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা=2āϟি 31,37

★41āĻĨেāĻ•ে50āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা=3āϟি 41,43,47

★51āĻĨেāĻ•ে 60āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা=2āϟি 53,59

★61āĻĨেāĻ•ে70āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা=2āϟি 61,67

★71āĻĨেāĻ•ে80 āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা=3āϟি 71,73,79

★81āĻĨেāĻ•ে 90āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা=2āϟি 83,89

★91āĻĨেāĻ•ে100āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা=1āϟি 97

🚩1-100 āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা 25 āϟিঃ

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97

🚩1-100āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝাāϰ āϝোāĻ—āĻĢāϞ

1060।

_____________________________________________

🚩1.āĻ•োāύ āĻ•িāĻ›ুāϰ

āĻ—āϤিāĻŦেāĻ—= āĻ…āϤিāĻ•্āϰাāύ্āϤ āĻĻূāϰāϤ্āĻŦ/āϏāĻŽāϝ়

2.āĻ…āϤিāĻ•্āϰাāύ্āϤ āĻĻূāϰāϤ্āĻŦ = āĻ—āϤিāĻŦেāĻ—×āϏāĻŽāϝ়

3.āϏāĻŽāϝ়= āĻŽোāϟ āĻĻূāϰāϤ্āĻŦ/āĻŦেāĻ—

4.āϏ্āϰোāϤেāϰ āĻ…āύুāĻ•ূāϞে āύৌāĻ•াāϰ āĻ•াāϰ্āϝāĻ•āϰী āĻ—āϤিāĻŦেāĻ— = āύৌāĻ•াāϰ āĻĒ্āϰāĻ•ৃāϤ āĻ—āϤিāĻŦেāĻ— + āϏ্āϰোāϤেāϰ āĻ—āϤিāĻŦেāĻ—।

5.āϏ্āϰোāϤেāϰ āĻĒ্āϰāϤিāĻ•ূāϞে āύৌāĻ•াāϰ āĻ•াāϰ্āϝāĻ•āϰী āĻ—āϤিāĻŦেāĻ— = āύৌāĻ•াāϰ āĻĒ্āϰāĻ•ৃāϤ āĻ—āϤিāĻŦেāĻ— - āϏ্āϰোāϤেāϰ āĻ—āϤিāĻŦেāĻ—

_____________________________________________

đŸ—Ŗ️āϏāϰāϞ āϏুāĻĻ🚩

āϝāĻĻি āφāϏāϞ=P, āϏāĻŽāϝ়=T, āϏুāĻĻেāϰ āĻšাāϰ=R, āϏুāĻĻ-āφāϏāϞ=A āĻšāϝ়, āϤাāĻšāϞে

1.āϏুāĻĻেāϰ āĻĒāϰিāĻŽাāĻŖ= PRT/100

2.āφāϏāϞ= 100×āϏুāĻĻ-āφāϏāϞ(A)/100+TR

_____________________________________________

⭕🚩āύৌāĻ•াāϰ āĻ—āϤি āϏ্āϰোāϤেāϰ āĻ…āύুāĻ•ূāϞে āϘāύ্āϟাāϝ় 10 āĻ•ি.āĻŽি. āĻāĻŦং āϏ্āϰোāϤেāϰ āĻĒ্āϰāϤিāĻ•ূāϞে 2 āĻ•ি.āĻŽি.। āϏ্āϰোāϤেāϰ āĻŦেāĻ— āĻ•āϤ?

★āϟেāĻ•āύিāĻ•-

āϏ্āϰোāϤেāϰ āĻŦেāĻ— = (āϏ্āϰোāϤেāϰ āĻ…āύুāĻ•ূāϞে āύৌāĻ•াāϰ āĻŦেāĻ— - āϏ্āϰোāϤেāϰ āĻĒ্āϰāϤিāĻ•ূāϞে āύৌāĻ•াāϰ āĻŦেāĻ—) /2

= (10 - 2)/2=

= 4 āĻ•ি.āĻŽি.

🚩āĻāĻ•āϟি āύৌāĻ•া āϏ্āϰোāϤেāϰ āĻ…āύুāĻ•ূāϞে āϘāύ্āϟাāϝ় 8 āĻ•ি.āĻŽি.āĻāĻŦং āϏ্āϰোāϤেāϰ āĻĒ্āϰāϤিāĻ•ূāϞে āϘāύ্āϟাāϝ় 4 āĻ•ি.āĻŽি.

āϝাāϝ়। āύৌāĻ•াāϰ āĻŦেāĻ— āĻ•āϤ?

★ āϟেāĻ•āύিāĻ•-

āύৌāĻ•াāϰ āĻŦেāĻ— = (āϏ্āϰোāϤেāϰ āĻ…āύুāĻ•ূāϞে āύৌāĻ•াāϰ āĻŦেāĻ—+āϏ্āϰোāϤেāϰ āĻĒ্āϰāϤিāĻ•ূāϞে āύৌāĻ•াāϰ āĻŦেāĻ—)/2

= (8 + 4)/2

=6 āĻ•ি.āĻŽি.

🚩āύৌāĻ•া āĻ“ āϏ্āϰোāϤেāϰ āĻŦেāĻ— āϘāύ্āϟাāϝ় āϝāĻĨাāĻ•্āϰāĻŽে 10 āĻ•ি.āĻŽি. āĻ“ 5 āĻ•ি.āĻŽি.। āύāĻĻীāĻĒāĻĨে 45 āĻ•ি.āĻŽি. āĻĒāĻĨ āĻāĻ•āĻŦাāϰ āĻ—িāϝ়ে āĻĢিāϰে āφāϏāϤে āĻ•āϤ āϏāĻŽāϝ় āϞাāĻ—āĻŦে?

āϟেāĻ•āύিāĻ•-

★āĻŽােāϟ āϏāĻŽāϝ় = [(āĻŽােāϟ āĻĻূāϰāϤ্āĻŦ/ āĻ…āύুāĻ•ূāϞে āĻŦেāĻ—) + (āĻŽােāϟ āĻĻূāϰāϤ্āĻŦ/āĻĒ্āϰāϤিāĻ•ূāϞে āĻŦেāĻ—)]

āωāϤ্āϤāϰ:āϏ্āϰোāϤেāϰ āĻ…āύুāĻ•ূāϞে āύৌāĻ•াāϰāĻŦেāĻ— = (10+5) = 15 āĻ•ি.āĻŽি.

āϏ্āϰোāϤেāϰ āĻĒ্āϰāϤিāĻ•ূāϞে āύৌāĻ•াāϰ āĻŦেāĻ— = (10-5) = 5āĻ•ি.āĻŽি.

[(45/15) +(45/5)]

= 3+9

=12 āϘāύ্āϟা

_____________________________________________

🚩★āϏāĻŽাāύ্āϤāϰ āϧাāϰাāϰ āĻ•্āϰāĻŽিāĻ• āϏংāĻ–্āϝাāϰ āϝোāĻ—āĻĢāϞ-

(āϝāĻ–āύ āϏংāĻ–্āϝাāϟি1 āĻĨেāĻ•ে āĻļুāϰু)1+2+3+4+......+n āĻšāϞে āĻāϰূāĻĒ āϧাāϰাāϰ āϏāĻŽāώ্āϟি= [n(n+1)/2]

n=āĻļেāώ āϏংāĻ–্āϝা āĻŦা āĻĒāĻĻ āϏংāĻ–্āϝা s=āϝোāĻ—āĻĢāϞ

🚩 āĻĒ্āϰāĻļ্āύঃ 1+2+3+....+100 =?

👍 āϏāĻŽাāϧাāύঃ[n(n+1)/2]

= [100(100+1)/2]

= 5050

🚩★āϏāĻŽাāύ্āϤāϰ āϧাāϰাāϰ āĻŦāϰ্āĻ— āϝোāĻ— āĻĒāĻĻ্āϧāϤিāϰ āĻ•্āώেāϤ্āϰে,-

āĻĒ্āϰāĻĨāĻŽ n āĻĒāĻĻেāϰ āĻŦāϰ্āĻ—েāϰ āϏāĻŽāώ্āϟি

S= [n(n+1)2n+1)/6]

(āϝāĻ–āύ 1² + 2²+ 3² + 4²........ +n²)

🚩āĻĒ্āϰāĻļ্āύঃ(1² + 3²+ 5² + ....... +31²) āϏāĻŽাāύ āĻ•āϤ?

👍āϏāĻŽাāϧাāύঃ S=[n(n+1)2n+1)/6]

= [31(31+1)2×31+1)/6]

=31

🚩★āϏāĻŽাāύ্āϤāϰ āϧাāϰাāϰ āϘāύāϝোāĻ— āĻĒāĻĻ্āϧāϤিāϰ āĻ•্āώেāϤ্āϰে-

āĻĒ্āϰāĻĨāĻŽ n āĻĒāĻĻেāϰ āϘāύেāϰ āϏāĻŽāώ্āϟি S= [n(n+1)/2]2

(āϝāĻ–āύ 1³+2³+3³+.............+n³)

🚩āĻĒ্āϰāĻļ্āύঃ1³+2³+3³+4³+…………+10³=?

👍āϏāĻŽাāϧাāύঃ [n(n+1)/2]2

= [10(10+1)/2]2

= 3025

_____________________________________________

🚩★āĻĒāĻĻ āϏংāĻ–্āϝা āĻ“ āĻĒāĻĻ āϏংāĻ–্āϝাāϰ āϏāĻŽāώ্āϟি āύিāϰ্āύāϝ়েāϰ āĻ•্āώেāϤ্āϰেঃ

āĻĒāĻĻ āϏংāĻ–্āϝা N= [(āĻļেāώ āĻĒāĻĻ – āĻĒ্āϰāĻĨāĻŽ āĻĒāĻĻ)/āĻĒ্āϰāϤি āĻĒāĻĻে āĻŦৃāĻĻ্āϧি] +1

🚩āĻĒ্āϰāĻļ্āύঃ5+10+15+…………+50=?

👍āϏāĻŽাāϧাāύঃ āĻĒāĻĻāϏংāĻ–্āϝা = [(āĻļেāώ āĻĒāĻĻ – āĻĒ্āϰāĻĨāĻŽāĻĒāĻĻ)/āĻĒ্āϰāϤি āĻĒāĻĻে āĻŦৃāĻĻ্āϧি]+1

= [(50 – 5)/5] + 1

=10

āϏুāϤāϰাং āĻĒāĻĻ āϏংāĻ–্āϝাāϰ āϏāĻŽāώ্āϟি

= [(5 + 50)/2] ×10

= 275

🚩★ n āϤāĻŽ āĻĒāĻĻ=a + (n-1)d

āĻāĻ–াāύে, n =āĻĒāĻĻāϏংāĻ–্āϝা, a = 1āĻŽ āĻĒāĻĻ, d= āϏাāϧাāϰāĻŖ āĻ…āύ্āϤāϰ

🚩āĻĒ্āϰāĻļ্āύঃ 5+8+11+14+.......āϧাāϰাāϟিāϰ āĻ•োāύ āĻĒāĻĻ 302?

👍 āϏāĻŽাāϧাāύঃ āϧāϰি, n āϤāĻŽ āĻĒāĻĻ =302

āĻŦা, a + (n-1)d=302

āĻŦা, 5+(n-1)3 =302

āĻŦা, 3n=300

āĻŦা, n=100

🚩āϏāĻŽাāύ্āϤāϰ āϧাāϰাāϰ āĻ•্āϰāĻŽিāĻ• āĻŦিāϜোāĻĄ় āϏংāĻ–্āϝাāϰ āϝোāĻ—āĻĢāϞ-S=M² āĻāĻ–াāύে,M=āĻŽāϧ্āϝেāĻŽা=(1āĻŽ āϏংāĻ–্āϝা+āĻļেāώ āϏংāĻ–্āϝা)/2

🚩āĻĒ্āϰāĻļ্āύঃ1+3+5+.......+19=āĻ•āϤ?

👍 āϏāĻŽাāϧাāύঃ S=M²

={(1+19)/2}²

=(20/2)²

=100

_____________________________________________

⭕🚩 āĻŦāϰ্āĻ—đŸ‘

(1)²=1,(11)²=121,(111)²=12321,(1111)²=1234321,(11111)²=123454321

🚩👍āύিāϝ়āĻŽ-āϝāϤāĻ—ুāϞো 1 āĻĒাāĻļাāĻĒাāĻļি āύিāϝ়ে āĻŦāϰ্āĻ— āĻ•āϰা āĻšāĻŦে, āĻŦāϰ্āĻ— āĻĢāϞে 1 āĻĨেāĻ•ে āĻļুāϰু āĻ•āϰে āĻĒāϰ āĻĒāϰ āϏেāχ āϏংāĻ–্āϝা āĻĒāϰ্āϝāύ্āϤ āϞিāĻ–āϤে āĻšāĻŦে āĻāĻŦং āϤাāϰāĻĒāϰ āϏেāχ āϏংāĻ–্āϝাāϰ āĻĒāϰ āĻĨেāĻ•ে āĻ…āϧঃāĻ•্āϰāĻŽে āĻĒāϰāĻĒāϰ āϏংāĻ–্āϝাāĻ—ুāϞো āϞিāĻ–ে 1 āϏংāĻ–্āϝাāϝ় āĻļেāώ āĻ•āϰāϤে āĻšāĻŦে।

🚩(3)²=9,(33)²=1089,(333)²=110889,(3333)²=11108889,(33333)²=1111088889

👍āϝāϤāĻ—ুāϞি 3 āĻĒাāĻļাāĻĒাāĻļি āύিāϝ়ে āĻŦāϰ্āĻ— āĻ•āϰা āĻšāĻŦে, āĻŦāϰ্āĻ— āĻĢāϞে āĻāĻ•āĻ•েāϰ āϘāϰে 9 āĻāĻŦং 9 āĻāϰ āĻŦাঁāĻĻিāĻ•ে āϤাāϰ āϚেāϝ়ে (āϝāϤāĻ—ুāϞো 3 āĻĨাāĻ•āĻŦে) āĻāĻ•āϟি āĻ•āĻŽ āϏংāĻ–্āϝāĻ• 8, āϤাāϰ āĻĒāϰ āĻŦাঁāĻĻিāĻ•ে āĻāĻ•āϟি 0 āĻāĻŦং āĻŦাঁāĻĻিāĻ•ে 8 āĻāϰ āϏāĻŽāϏংāĻ–্āϝāĻ• 1 āĻŦāϏāĻŦে।

🚩(6)²=36,(66)²=4356,(666)²=443556,(6666)²=44435556,(66666)²=4444355556

👍āϝāϤāĻ—ুāϞি 6 āĻĒাāĻļাāĻĒাāĻļি āύিāϝ়ে āĻŦāϰ্āĻ— āĻ•āϰা āĻšāĻŦে, āĻŦāϰ্āĻ— āĻĢāϞে āĻāĻ•āĻ•েāϰ āϘāϰে 6 āĻāĻŦং 6 āĻāϰ āĻŦাঁāĻĻিāĻ•ে āϤাāϰ āϚেāϝ়ে (āϝāϤāĻ—ুāϞো 6 āĻĨাāĻ•āĻŦে) āĻāĻ•āϟি āĻ•āĻŽ āϏংāĻ–্āϝāĻ• 5, āϤাāϰ āĻĒāϰ āĻŦাঁāĻĻিāĻ•ে āĻāĻ•āϟি 3 āĻāĻŦং āĻŦাঁāĻĻিāĻ•ে 5 āĻāϰ āϏāĻŽāϏংāĻ–্āϝāĻ• 4 āĻŦāϏāĻŦে।

🚩(9)²=81,(99)²=9801,(999)²=998001,(9999)²=99980001,(99999)²=9999800001

👍āϝāϤāĻ—ুāϞি 9 āĻĒাāĻļাāĻĒাāĻļি āύিāϝ়ে āĻŦāϰ্āĻ— āĻ•āϰা āĻšāĻŦে, āĻŦāϰ্āĻ— āĻĢāϞে āĻāĻ•āĻ•েāϰ āϘāϰে 1 āĻāĻŦং 1 āĻāϰ āĻŦাঁāĻĻিāĻ•ে āϤাāϰ āϚেāϝ়ে (āϝāϤāĻ—ুāϞো 9 āĻĨাāĻ•āĻŦে) āĻāĻ•āϟি āĻ•āĻŽ āϏংāĻ–্āϝāĻ• 0, āϤাāϰ āĻĒāϰ āĻŦাঁāĻĻিāĻ•ে āĻāĻ•āϟি 8 āĻāĻŦং āĻŦাঁāĻĻিāĻ•ে 0 āĻāϰ āϏāĻŽāϏংāĻ–্āϝāĻ• 9 āĻŦāϏāĻŦে।

_____________________________________________

⭕đŸ—Ŗ️👉āϜāύāĻ•≠Father

1)Numerology (āϏংāĻ–্āϝাāϤāϤ্āϤ্āĻŦ)- Pythagoras(āĻĒিāĻĨাāĻ—োāϰাāϏ)

2) Geometry(āϜ্āϝাāĻŽিāϤি)- Euclid(āχāωāĻ•্āϞিāĻĄ)

3) Calculus(āĻ•্āϝাāϞāĻ•ুāϞাāϏ)- Newton(āύিāωāϟāύ)

4) Matrix(āĻŽ্āϝাāϟ্āϰিāĻ•্āϏ) - Arthur Cayley(āĻ…āϰ্āĻĨাāϰ āĻ•্āϝাāϞে)

5)Trigonometry(āϤ্āϰিāĻ•োāĻŖāĻŽিāϤি)Hipparchus(āĻšিāĻĒ্āĻĒাāϰāϚাāϏ)

6) Asthmatic(āĻĒাāϟিāĻ—āĻŖিāϤ) Brahmagupta(āĻŦ্āϰāĻš্āĻŽāĻ—ুāĻĒ্āϤ)

7) Algebra(āĻŦীāϜāĻ—āĻŖিāϤ)- Muhammad ibn Musa al-Khwarizmi(āĻŽােāĻšাāĻŽ্āĻŽāĻĻ āĻŽুāϏা āφāϞ āĻ–াāϰিāϜāĻŽী)

😎 Logarithm(āϞāĻ—াāϰিāĻĻāĻŽ)- John Napier(āϜāύ āύেāĻĒিāϝ়াāϰ)

9) Set theory(āϏেāϟ āϤāϤ্āϤ্āĻŦ)- George Cantor(āϜāϰ্āϜ āĻ•্āϝাāύ্āϟāϰ)

10) Zero(āĻļূāύ্āϝ)- Brahmagupta(āĻŦ্āϰāĻš্āĻŽāĻ—ুāĻĒ্āϤ)

_____________________________________________

🌟⭕👉āĻ…āĻ™্āĻ•েāϰ āχংāϰেāϜি āĻļāĻŦ্āĻĻ

āĻĒাāϟিāĻ—āĻŖিāϤ āĻ“ āĻĒāϰিāĻŽিāϤি

āĻ…āĻ™্āĻ•-Digit, āĻ…āύুāĻĒাāϤ-Ratio, āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা—Prime number, āĻĒূāϰ্āĻŖāĻŦāϰ্āĻ—-Perfect square,āĻ‰ā§ŽāĻĒাāĻĻāĻ•-Factor,āĻ•্āϰāĻŽিāĻ• āϏāĻŽাāύুāĻĒাāϤী—Continued proportion, āĻ•্āϰāϝ়āĻŽূāϞ্āϝ -Cost price, āĻ•্āώāϤি-Loss, āĻ—āĻĄ়-Average, āĻ—āϤিāĻŦেāĻ—-Velocity, āĻ—ুāĻŖāĻĢāϞ-Product, āĻ—,āϏা,āĻ—ু-Highest Common Factor, āϘাāϤ-Power, āϘāύāĻŽূāϞ—Cube root, āϘāύāĻ•-Cube, āϘāύāĻĢāϞ-Volume, āĻĒূāϰ্āύāϏংāĻ–্āϝা-Integer, āϚাāĻĒ-Arc, āϚোāĻ™-Cylinder, āϜ্āϝা-Chord, āϜোāĻĄ় āϏংāĻ–্āϝা-Even number, āϧ্āϰুāĻŦāĻ•-Constant, āĻĒāϰিāϏীāĻŽা-Perimeter, āĻŦাāϏ্āϤāĻŦ-Real, āĻŦāϰ্āĻ—āĻŽূāϞ-Square root, āĻŦ্āϝāϏ্āϤ āĻ…āύুāĻĒাāϤ—Inverse ratio, āĻŦিāϜোāĻĄ়āϏংāĻ–্āϝা—Odd number, āĻŦিāĻ•্āϰāϝ়āĻŽূāϞ্āϝ -Selling price, āĻŦীāϜāĻ—āĻŖিāϤ—Algebra, āĻŽূāϞāĻĻ Rational, āĻŽāϧ্āϝ āϏāĻŽাāύুāĻĒাāϤী -Mean proportional, āϝােāĻ—āĻĢāϞ=Sum

āϞ,āϏা,āĻ—ু-Lowest Common Multiple, āϞāĻŦ-Numerator, āĻļāϤāĻ•āϰা-Percentage, āϏāĻŽাāύুāĻĒাāϤ-Proportion, āϏāĻŽাāύুāĻĒাāϤী-Proportional, āϏুāĻĻ-Interest, āĻšāϰ-Denominator,

_____________________________________________

❤️āϜ্āϝাāĻŽিāϤি

āĻ…āϤিāĻ­ূāϜ—Hypotenuse, āĻ…āύ্āϤঃāĻ•োāĻŖ-Internal angle, āĻ…āϰ্āϧāĻŦৃāϤ্āϤ-Semi-circle, āĻ…āύ্āϤ āĻŦ্āϝাāϏাāϰ্āϧ-In-radius, āφāϝ়āϤāĻ•্āώেāϤ্āϰ-Rectangle, āωāϚ্āϚāϤা-Height, āĻ•āϰ্āĻŖ–Diagonal, āĻ•োāĻŖ-Angle, āĻ•েāύ্āĻĻ্āϰ-Centre, āĻ—ােāϞāĻ•-Sphere, āϚāϤুāϰ্āĻ­ুāϜ-Quadrilateral, āϚোāĻ™-Cylinder,āϜ্āϝাāĻŽিāϤি-Geometry,āĻĻৈāϰ্āϘ্āϝ-Length, āĻĒāĻž্āϚāĻ­ূāϜ -Pentagon, āĻĒ্āϰāϏ্āĻĨ-Breadth

āĻĒূāϰāĻ•āĻ•োāύ-Complementary angles, āĻŦাāĻšু-Side, āĻŦৃāϤ্āϤ-Circle, āĻŦ্āϝাāϏাāϰ্āϧ-Radius, āĻŦ্āϝাāϏ-Diameter, āĻŦāĻšুāĻ­ূāϜ-Polygon, āĻŦāϰ্āĻ—āĻ•্āώেāϤ্āϰ—Square, āĻŦāĻšি:āϏ্āĻĨ External, āĻļāĻ™্āĻ•ু-Cone, āϏāĻŽāĻ•োāĻŖ-Right angle, āϏāĻŽāĻŦাāĻšু āϤ্āϰিāĻ­ূāϜ-Equilateral triangle, āĻ…āϏāĻŽāĻŦাāĻšু āϤ্āϰিāĻ­ূāϜ—Scalene triangle, āϏāĻŽāĻĻ্āĻŦিāĻŦাāĻšু āϤ্āϰিāĻ­ূāϜ-isosceles Triangle,āϏāĻŽāĻ•োāĻŖী āϤ্āϰিāĻ­ুāϜ Right angled triangle, āϏূāĻ•্āώ্āĻŽāĻ•োāĻŖী-Acute angled triangle, āϏ্āĻĨূāϞāĻ•োāĻŖী āϤ্āϰিāĻ­ুāϜ Obtuse angled triangle, āϏāĻŽাāύ্āϤāϰাāϞ—Parallel, āϏāϰāϞāϰেāĻ–া—Straight line, āϏāĻŽ্āĻĒূāϰāĻ• āĻ•োāĻŖ—Supplementary angles, āϏāĻĻৃāĻļāĻ•োāĻŖী-Equiangular

_____________________________________________

🚩āϰোāĻŽাāύ āϏংāĻ–্āϝা≠ Roman numerals )

1:I

2: II

3: III

4: IV

5: V

6: VI

7: VII

8: VIII

9: IX

10: X

11: XI

12: XII

13: XIII

14: XIV

15: XV

16: XVI

17: XVII

18: XVIII

19: XIX

20: XX

30: XXX

40: XL

50: L

60: LX

70: LXX

80: LXXX

90: XC

100: C

200: CC

300: CCC

400: CD

500: D

600: DC

700: DCC

800: DCCC

900: CM

1000:M

_____________________________________________

⭕đŸ—Ŗ️1. āϜোāĻĄ় āϏংāĻ–্āϝা + āϜোāĻĄ় āϏংāĻ–্āϝা = āϜোāĻĄ়

āϏংāĻ–্āϝা।

āϝেāĻŽāύঃ 2 + 6 = 8.

đŸ—Ŗ️2. āϜোāĻĄ় āϏংāĻ–্āϝা + āĻŦিāϜোāĻĄ় āϏংāĻ–্āϝা =

āĻŦিāϜোāĻĄ় āϏংāĻ–্āϝা।

āϝেāĻŽāύঃ 6 + 7 = 13.

đŸ—Ŗ️3. āĻŦিāϜোāĻĄ় āϏংāĻ–্āϝা + āĻŦিāϜোāĻĄ় āϏংāĻ–্āϝা =

āϜোāĻĄ় āϏংāĻ–্āϝা।

āϝেāĻŽāύঃ 3 + 5 = 8.

đŸ—Ŗ️4. āϜোāĻĄ় āϏংāĻ–্āϝা × āϜোāĻĄ় āϏংāĻ–্āϝা = āϜোāĻĄ়

āϏংāĻ–্āϝা।

āϝেāĻŽāύঃ 6 × 8 = 48.

đŸ—Ŗ️5.āϜোāĻĄ় āϏংāĻ–্āϝা × āĻŦিāϜোāĻĄ় āϏংāĻ–্āϝা = āϜোāĻĄ়

āϏংāĻ–্āϝা।

āϝেāĻŽāύঃ 6 × 7 = 42

đŸ—Ŗ️6.āĻŦিāϜোāĻĄ় āϏংāĻ–্āϝা × āĻŦিāϜোāĻĄ় āϏংāĻ–্āϝা =

āĻŦিāϜোāĻĄ় āϏংāĻ–্āϝা।

āϝেāĻŽāύঃ 3 × 9 = 27

_____________________________________________

⭕👉āĻ•্āϝাāϞāĻ•ুāϞেāϟāϰ āĻ›াāĻĄ়া āϝে āĻ•োāύ āϏংāĻ–্āϝাāĻ•ে āĻ­াāĻ— āĻ•āϰাāϰ āĻāĻ•āϟি effective āϟেāĻ•āύিāĻ•!

🌟 āĻ•্āϝাāϞāĻ•ুāϞেāϟāϰ āĻ›াāĻĄ়া āϝে āĻ•োāύ āϏংāĻ–্āϝাāĻ•ে 5 āĻĻিāϝ়ে āĻ­াāĻ— āĻ•āϰাāϰ āĻāĻ•āϟি effective āϟেāĻ•āύিāĻ•

1.🚩 13/5= 2.6 (āĻ•্āϝাāϞāĻ•ুāϞেāϟāϰ āĻ›াāĻĄ়া āĻŽাāϤ্āϰ ā§Š āϏেāĻ•েāύ্āĻĄে āĻāϟি āϏāĻŽাāϧাāύ āĻ•āϰা āϝাāϝ়)

⭕★āϟেāĻ•āύিāĻ•ঃ

5 āĻĻিāϝ়ে āϝে āϏংāĻ–্āϝাāĻ•ে āĻ­াāĻ— āĻ•āϰāĻŦেāύ āϤাāĻ•ে 2 āĻĻিāϝ়ে āĻ—ুāĻŖ āĻ•āϰুāύ āϤাāϰāĻĒāϰ āĻĄাāύāĻĻিāĻ• āĻĨেāĻ•ে 1 āϘāϰ āφāĻ—ে āĻĻāĻļāĻŽিāĻ• āĻŦāϏিāϝ়ে āĻĻিāύ। āĻ•াāϜ āĻļেāώ!!! 13*2=26, āϤাāϰāĻĒāϰ āĻĨেāĻ•ে 1 āϘāϰ āφāĻ—ে āĻĻāĻļāĻŽিāĻ• āĻŦāϏিāϝ়ে āĻĻিāϞে 2.6 ।

2.🚩 213/5=42.6 (213*2=426)

0.03/5= 0.006 (0.03*2=0.06 āϝাāϰ āĻāĻ•āϘāϰ āφāĻ—ে āĻĻāĻļāĻŽিāĻ• āĻŦāϏাāϞে āĻšāϝ় 0.006) 333,333,333/5= 66,666,666.6 (āĻāχ āĻ—ুāϞা āĻ•āϰāϤে āφāĻŦাāϰ āĻ•্āϝাāϞāĻ•ুāϞেāϟāϰ āϞাāĻ—ে āύা āĻ•ি!)

3.🚩 12,121,212/5= 2,424,242.4

āĻāĻŦাāϰ āύিāϜে āχāϚ্āĻ›েāĻŽāϤ 5 āĻĻিāϝ়ে āϝে āĻ•োāύ āϏংāĻ–্āϝাāĻ•ে āĻ­াāĻ— āĻ•āϰে āĻĻেāĻ–ুāύ

🌟👉 āĻ•্āϝাāϞāĻ•ুāϞেāϟāϰ āĻ›াāĻĄ়া āϝে āĻ•োāύ āϏংāĻ–্āϝাāĻ•ে 25 āĻĻিāϝ়ে āĻ­াāĻ— āĻ•āϰাāϰ āĻāĻ•āϟি effective āϟেāĻ•āύিāĻ•

1.🚩 13/25=0.52 (āĻ•্āϝাāϞāĻ•ুāϞেāϟāϰ āĻ›াāĻĄ়া āĻāϟিāĻ“ āϏāĻŽাāϧাāύ āĻ•āϰা āϝাāϝ়)

⭕★āϟেāĻ•āύিāĻ•ঃ

25 āĻĻিāϝ়ে āϝে āϏংāĻ–্āϝাāĻ•ে āĻ­াāĻ— āĻ•āϰāĻŦেāύ āϤাāĻ•ে 4 āĻĻিāϝ়ে āĻ—ুāĻŖ āĻ•āϰুāύ āϤাāϰāĻĒāϰ āĻĄাāύāĻĻিāĻ• āĻĨেāĻ•ে 2 āϘāϰ āφāĻ—ে āĻĻāĻļāĻŽিāĻ• āĻŦāϏিāϝ়ে āĻĻিāύ। 13*4=52, āϤাāϰāĻĒāϰ āĻĨেāĻ•ে 2 āϘāϰ āφāĻ—ে āĻĻāĻļāĻŽিāĻ• āĻŦāϏিāϝ়ে āĻĻিāϞে 0.52 ।

02.🚩 210/25 = 8.40

03.🚩 0.03/25 = 0.0012

04.🚩 222,222/25 = 8,888.88

05🚩. 13,121,312/25 = 524,852.48

⭕👉 āĻ•্āϝাāϞāĻ•ুāϞেāϟāϰ āĻ›াāĻĄ়া āϝে āĻ•োāύ āϏংāĻ–্āϝাāĻ•ে 125 āĻĻিāϝ়ে āĻ­াāĻ— āĻ•āϰাāϰ āĻāĻ•āϟি effective āϟেāĻ•āύিāĻ•

01.🚩 7/125 = 0.056

⭕★āϟেāĻ•āύিāĻ•ঃ

125 āĻĻিāϝ়ে āϝে āϏংāĻ–্āϝাāĻ•ে āĻ­াāĻ— āĻ•āϰāĻŦেāύ āϤাāĻ•ে 8 āĻĻিāϝ়ে āĻ—ুāĻŖ āĻ•āϰুāύ āϤাāϰāĻĒāϰ āĻĄাāύāĻĻিāĻ• āĻĨেāĻ•ে 3 āϘāϰ āφāĻ—ে āĻĻāĻļāĻŽিāĻ• āĻŦāϏিāϝ়ে āĻĻিāύ। āĻ•াāϜ āĻļেāώ! 7*8=56, āϤাāϰāĻĒāϰ āĻĨেāĻ•ে 3 āϘāϰ āφāĻ—ে āĻĻāĻļāĻŽিāĻ• āĻŦāϏিāϝ়ে āĻĻিāϞে 0.056 ।

02.🚩 111/125 = 0.888

03.🚩 600/125 = 4.800

_____________________________________________

⭕đŸ—Ŗ️👉āφāϏুāύ āϏāĻšāϜে āĻ•āϰি

āϟāĻĒিāĻ•ঃ 10 āϏেāĻ•েāύ্āĻĄে āĻŦāϰ্āĻ—āĻŽূāϞ āύিāϰ্āĻŖāϝ়।

āĻŦিঃāĻĻ্āϰঃ āϝে āϏংāĻ–্āϝাāĻ—ুāϞোāϰ āĻŦāϰ্āĻ—āĻŽূāϞ 1 āĻĨেāĻ•ে 99 āĻāϰ āĻŽāϧ্āϝে āĻāχ āĻĒāĻĻ্āϧāϤিāϤে āϤাāĻĻেāϰ āĻŦেāϰ āĻ•āϰা āϝাāĻŦে āĻ–ুāĻŦ āϏāĻšāϜেāχ। āĻĒ্āϰāĻļ্āύে āĻ…āĻŦāĻļ্āϝāχ āĻĒূāϰ্āĻŖāĻŦāϰ্āĻ— āϏংāĻ–্āϝা āĻĨাāĻ•া āϞাāĻ—āĻŦে। āĻ…āϰ্āĻĨাā§Ž āωāϤ্āϤāϰ āϝāĻĻি āĻĻāĻļāĻŽিāĻ• āĻ­āĻ—্āύাংāĻļ āφāϏে āϤāĻŦে āĻāχ āĻĒāĻĻ্āĻŦāϤি āĻ•াāϜে āφāϏāĻŦেāύা।

āĻ…āĻŦāĻļ্āϝāχ āĻŽāύোāϝোāĻ— āĻĻিāϝ়ে āĻĒāĻĄ়āϤে āĻšāĻŦে āĻāĻŦং āĻĒ্āϰ্āϝাāĻ•āϟিāϏ āĻ•āϰāϤে āĻšāĻŦে। āύāϝ়āϤ āĻ­ুāϞে āϝাāĻŦেāύ।

āϤāĻŦে āφāϏুāύ āĻļুāϰু āĻ•āϰা āϝাāĻ•। āĻļুāϰুāϤে 1 āĻĨেāĻ•ে 9 āĻĒāϰ্āϝāύ্āϤ āϏংāĻ–্āϝাāϰ āĻŦāϰ্āĻ— āĻŽুāĻ–āϏ্āĻĨ āĻ•āϰে āύিāχ। āφāĻļা āĻ•āϰি āĻāĻ—ুāϞো āϏāĻŦাāχ āϜাāύেāύ। āϏুāĻŦিāϧাāϰ āϜāύ্āϝে āφāĻŽি āύিāϚে āϞিāĻ–ে āĻĻিāϚ্āĻ›ি-

1 square = 1, 2 square = 4

3 square = 9, 4 square = 16

5 square = 25, 6 square = 36

7 square = 49, 8 square = 64

9 square = 81

āĻāĻ–াāύে āĻĒ্āϰāϤ্āϝেāĻ•āϟা āĻŦāϰ্āĻ— āϏংāĻ–্āϝাāϰ āĻĻিāĻ•ে āĻ–েāϝ়াāϞ āĻ•āϰāϞে āĻĻেāĻ–āĻŦেāύ, āϏāĻŦাāϰ āĻļেāώেāϰ āĻ…ংāĻ•āϟিāϰ āĻ•্āώেāϤ্āϰে -

★1 āφāϰ 9 āĻāϰ āĻŦāϰ্āĻ—েāϰ āĻļেāώ āĻ…ংāĻ• āĻŽিāϞ āφāĻ›ে (1, 81)

★2 āφāϰ 8 āĻāϰ āĻŦāϰ্āĻ—েāϰ āĻļেāώ āĻ…ংāĻ• āĻŽিāϞ āφāĻ›ে(4, 64)

★3 āφāϰ 7 āĻāϰ āĻŦāϰ্āĻ—েāϰ āĻļেāώ āĻ…ংāĻ• āĻŽিāϞ āφāĻ›ে (9, 49);

★4 āφāϰ 6 āĻāϰ āĻŦāϰ্āĻ—েāϰ āĻļেāώ āĻ…ংāĻ• āĻŽিāϞ āφāĻ›ে(16, 36);

āĻāĻŦং 5 āĻāĻ•া frown emoticon

āĻāĻĻ্āĻĻুāϰ āĻĒāϰ্āϝāύ্āϤ āĻŦুāĻāϤে āϝāĻĻি āĻ•োāύ āϏāĻŽāϏ্āϝা āĻĨাāĻ•ে āϤāĻŦে āφāĻŦাāϰ āĻĒāĻĄ়ে āύিāύ।

đŸ—Ŗ️āωāĻĻাāĻšāϰāĻŖ:- 576 āĻāϰ āĻŦāϰ্āĻ—āĻŽূāϞ āύিāϰ্āĻŖāϝ় āĻ•āϰুāύ।

👉āĻĒ্āϰāĻĨāĻŽ āϧাāĻĒঃ āϝে āϏংāĻ–্āϝাāϰ āĻŦāϰ্āĻ—āĻŽূāϞ āύিāϰ্āĻŖāϝ় āĻ•āϰāϤে āĻšāĻŦে āϤাāϰ āĻāĻ•āĻ•েāϰ āϘāϰেāϰ āĻ…ংāĻ•āϟি āĻĻেāĻ–āĻŦেāύ। āĻāĻ•্āώেāϤ্āϰে āϤা āĻšāϚ্āĻ›ে '6' ।

👉 āĻĻ্āĻŦিāϤীāϝ় āϧাāĻĒঃ āωāĻĒāϰেāϰ āϞিāϏ্āϟ āĻĨেāĻ•ে āϏে āϏংāĻ–্āϝাāϰ āĻŦāϰ্āĻ—েāϰ āĻļেāώ āĻ…ংāĻ• 6 āϤাāĻĻেāϰ āύিāĻŦেāύ। āĻāĻ•্āώেāϤ্āϰে 4 āĻāĻŦং 6 । āφāĻŦাāϰ āĻŦāϞি, āĻ–েāϝ়াāϞ āĻ•āϰুāύ- 4 āĻāĻŦং 6 āĻāϰ āĻŦāϰ্āĻ— āϝāĻĨাāĻ•্āϰāĻŽে 16 āĻāĻŦং 36; āϝাāĻĻেāϰ āĻāĻ•āĻ•েāϰ āϘāϰেāϰ āĻ…ংāĻ• āĻ•িāύা '6' । āĻŦুāĻāϤে āĻĒেāϰেāĻ›েāύ? āύা āĻŦুāĻāϞে āφāĻŦাāϰ āĻĒāĻĄ়ে āĻĻেāĻ–ুāύ।

👉 āϤৃāϤীāϝ় āϧাāĻĒঃ 4 / 6 āϞিāĻ–ে āϰাāĻ–ুāύ āĻ–াāϤাāϝ়। (āφāĻŽāϰা āωāϤ্āϤāϰেāϰ āĻāĻ•āĻ•েāϰ āϘāϰেāϰ āĻ…ংāĻ• āĻĒেāϝ়ে āĻ—েāĻ›ি, āϝা āĻšāϚ্āĻ›ে 4 āĻ…āĻĨāĻŦা 6; āĻ•িāύ্āϤু āĻ•োāύāϟা? āĻāϰ āωāϤ্āϤāϰ āĻĒাāĻŦেāύ āĻ…āώ্āϟāĻŽ āϧাāĻĒে, āĻĒāĻĄ়āϤে āĻĨাāĻ•ুāύ ...)

👉 āϚāϤুāϰ্āĻĨ āϧাāĻĒঃ āĻĒ্āϰāĻļ্āύেāϰ āĻāĻ•āĻ• āφāϰ āĻĻāĻļāĻ•েāϰ āĻ…ংāĻ• āĻŦাāĻĻ āĻĻিāϝ়ে āĻŦাāĻ•ি āĻ…ংāĻ•েāϰ āĻĻিāĻ•ে āϤাāĻ•াāύ। āĻāĻ•্āώেāϤ্āϰে āĻāϟি āĻšāϚ্āĻ›ে 5 ।

👉āĻĒāĻž্āϚāĻŽ āϧাāĻĒঃ āωāĻĒāϰেāϰ āϞিāϏ্āϟ āĻĨেāĻ•ে 5 āĻāϰ āĻ•াāĻ›াāĻ•াāĻ›ি āϝে āĻŦāϰ্āĻ— āϏংāĻ–্āϝাāϟি āφāĻ›ে āϤাāϰ āĻŦāϰ্āĻ—āĻŽূāϞāϟা āύিāύ। āĻāĻ•্āώেāϤ্āϰে 4, āϝা āĻ•িāύা 2 āĻāϰ āĻŦāϰ্āĻ—। (āφāĻŽāϰা āωāϤ্āϤāϰেāϰ āĻĻāĻļāĻ•েāϰ āϘāϰেāϰ āĻ…ংāĻ• āĻĒেāϝ়ে āĻ—েāĻ›ি, āϝা āĻšāϚ্āĻ›ে 2 )

👉āώāώ্āĻ  āϧাāĻĒঃ 2 āĻāϰ āϏাāĻĨে āϤাāϰ āĻĒāϰেāϰ āϏংāĻ–্āϝা āĻ—ুāύ āĻ•āϰুāύ। āĻ…āϰ্āĻĨাā§Ž 2*3=6

👉āϏāĻĒ্āϤāĻŽ āϧাāĻĒঃ āϚāϤুāϰ্āĻĨ āϧাāĻĒে āĻĒাāĻ“āϝ়া āϏংāĻ–্āϝাāϟা (5) āώāώ্āĻ  āϧাāĻĒে āĻĒাāĻ“āϝ়া āϏংāĻ–্āϝাāϰ (6) āϚেāϝ়ে āĻ›োāϟ āύাāĻ•ি āĻŦāĻĄ় āĻĻেāĻ–ুāύ। āĻ›োāϟ āĻšāϞে āϤৃāϤীāϝ় āϧাāĻĒে āĻĒাāĻ“āϝ়া āϏংāĻ–্āϝাāϰ āĻ›োāϟāϟি āύেāĻŦ, āĻŦāĻĄ় āĻšāϞে āĻŦāĻĄ়āϟি। (āĻŦুāĻāϤে āĻĒেāϰেāĻ›েāύ? āύāϝ়āϤ āφāĻŦাāϰ āĻĒāĻĄ়ুāύ)

👉āĻ…āώ্āϟāĻŽ āϧাāĻĒঃ āφāĻŽাāĻĻেāϰ āωāĻĻাāĻšāϰāĻŖেāϰ āĻ•্āώেāϤ্āϰে 5 āĻšāϚ্āĻ›ে 6 āĻāϰ āĻ›োāϟ, āϤাāχ āφāĻŽāϰা 4 / 6 āĻŽāϧ্āϝে āĻ›োāϟ āϏংāĻ–্āϝা āĻ…āϰ্āĻĨাā§Ž 4 āύেāĻŦ।

👉āύāĻŦāĻŽ āϧাāĻĒঃ āĻŽāύে āφāĻ›ে, āĻĒāĻž্āϚāĻŽ āϧাāĻĒে āĻĻāĻļāĻ•েāϰ āϘāϰেāϰ āĻ…ংāĻ• āĻĒেāϝ়েāĻ›িāϞাāĻŽ 2 āĻāĻŦাāϰ āĻĒেāϝ়েāĻ›ি āĻāĻ•āĻ•েāϰ āϘāϰেāϰ āĻ…ংāĻ• 4 । āϤাāχ āωāϤ্āϤāϰ āĻšāĻŦে 24

āĻ•āĻ িāύ āĻŽāύে āĻšāϚ্āĻ›ে? āĻāĻ•āĻĻāĻŽāχ āύা, āĻ•āϝ়েāĻ•āϟা āĻĒ্āϰ্āϝাāĻ•āϟিāϏ āĻ•āϰে āĻĻেāĻ–ুāύ। āφāĻŽাāϰ āĻŽāϤে āĻ–ুāĻŦ āĻŦেāĻļি āϏāĻŽāϝ় āϞাāĻ—াāϰ āĻ•āĻĨা āύা।

đŸ—Ŗ️āωāĻĻাāĻšāϰāĻŖ:- 4225 āĻāϰ āĻŦāϰ্āĻ—āĻŽূāϞ āĻŦেāϰ āĻ•āϰুāύ।

āĻŽāύে āφāĻ›ে 5 āϝে āĻāĻ•া āĻ›িāϞ? āϏে āĻāĻ•া āĻĨাāĻ•াāϝ় āφāĻĒāύাāϰ āĻ•াāϜ āĻ•িāύ্āϤু āĻ…āύেāĻ• āϏোāϜা āĻšāϝ়ে āĻ—েāĻ›ে। āĻĻেāĻ–ুāύ āĻ•েāύো āĻĒ্āϰāĻļ্āύেāϰ āĻļেāώ āĻ…ংāĻ• 5 āĻšāĻ“āϝ়াāϝ় āωāϤ্āϤāϰেāϰ āĻāĻ•āĻ•েāϰ āϘāϰেāϰ āĻ…ংāĻ• āĻšāĻŦে āĻ…āĻŦāĻļ্āϝāχ 5 ।

- āĻĒ্āϰāĻļ্āύেāϰ āĻāĻ•āĻ• āĻ“ āĻĻāĻļāĻ•েāϰ āϘāϰেāϰ āĻ…ংāĻ• āĻŦাāĻĻ āĻĻিāϝ়ে āĻĻিāϞে āĻŦাāĻ•ি āĻĨাāĻ•ে 42 ।

- 42 āĻāϰ āϏāĻŦāϚেāϝ়ে āĻ•াāĻ›েāϰ āĻĒূāϰ্āĻŖāĻŦāϰ্āĻ— āϏংāĻ–্āϝা āĻšāϚ্āĻ›ে 36, āϝাāϰ āĻŦāϰ্āĻ—āĻŽূāϞ āĻšāϚ্āĻ›ে 6 । āϤাāχ āωāϤ্āϤāϰ āĻšāϚ্āĻ›ে 65

_____________________________________________

💚

ℹ️1. āĻĒাঁāϚ āĻ…āĻ™্āĻ•েāϰ āĻ•্āώুāĻĻ্āϰāϤāĻŽ āϏংāĻ–্āϝা āĻāĻŦং āϚাāϰ āĻ…āĻ™্āĻ•েāϰ āĻŦৃāĻšāϤ্āϤāĻŽ āϏংāĻ–্āϝাāϰ āĻ…āύ্āϤāϰ āĻ•āϤ?

āωঃ ā§§।(ā§§ā§Ļā§Ļā§Ļā§Ļ-⧝⧝⧝⧝)

ℹ️2. ā§Ļ,ā§§,⧍ āĻāĻŦং ā§Š āĻĻ্āĻŦাāϰা āĻ—āĻ িāϤ āϚাāϰ āĻ…āĻ™্āĻ•েāϰ āĻŦৃāĻšāϤ্āϤāĻŽ āĻāĻŦং āĻ•্āώুāĻĻ্āϰāϤāĻŽ āϏংāĻ–্āϝাāϰ āĻŦিāϝ়োāĻ—āĻĢāϞ-

āωঃ ā§¨ā§§ā§Žā§­।(ā§Šā§¨ā§§ā§Ļ-ā§§ā§Ļā§¨ā§Š)

ℹ️3.āϝāĻĻি ā§§ āĻĨেāĻ•ে ā§§ā§Ļā§Ļ āĻĒāϰ্āϝāύ্āϤ āĻ—āĻŖāύা āĻ•āϰা āĻšāϝ় āϤāĻŦে āĻāϰ āĻŽāϧ্āϝে āĻ•āϤāϟি ā§Ģ āĻĒাāĻŦো।

āωঃ ⧍ā§Ļāϟি।

*ā§§āĻĨেāĻ•ে ā§§ā§Ļā§Ļ āĻĒāϰ্āϝāύ্āϤ ā§Ļ=ā§§ā§§āϟি

ā§§ āĻĨেāĻ•ে ā§§ā§Ļā§Ļ āĻĒāϰ্āϝāύ্āϤ ā§§=⧍⧧āϟি

ā§§ āĻĨেāĻ•ে ā§§ā§Ļā§Ļ āĻĒāϰ্āϝāύ্āϤ ⧍āĻĨেāĻ•ে ⧝ āĻĒāϰ্āϝāύ্āϤ āĻ…āĻ™্āĻ•āĻ—ুāϞো āĻĒাāĻ“āϝ়া āϝাāĻŦে=⧍ā§Ļāϟি।

ℹ️4. ⧭⧍ āϏংāĻ–্āϝাāϟিāϰ āĻŽোāϟ āĻ­াāϜāĻ• ?

āωঃ ⧧⧍āϟি

*⧭⧍=ā§§×⧭⧍=⧍×ā§Šā§Ŧ=ā§Š×⧍ā§Ē=ā§Ē×ā§§ā§Ž=ā§Ŧ×⧧⧍=ā§Ž×⧝

⧭⧍ āϏংāĻ–্āϝাāϟি āĻ­াāϜāĻ•=ā§§,⧍,ā§Š,ā§Ē,ā§Ŧ,ā§Ž,⧝,⧧⧍,ā§§ā§Ž,⧍ā§Ē,ā§Šā§Ŧ,⧭⧍।

ℹ️5. ā§§ āĻĨেāĻ•ে ā§§ā§Ļā§Ļ āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা āĻ•āϤāϟি?

āωঃ ⧍ā§Ģāϟি।

ℹ️6. (ā§Ļ.ā§Ļā§§)^⧍ āĻāϰ āĻŽাāύ āĻ•োāύ āĻ­āĻ—্āύাংāĻļāϟিāϰ āϏāĻŽাāύ

āωঃ ā§§/ā§§ā§Ļā§Ļā§Ļā§Ļ

*(ā§Ļ.ā§Ļā§§)^⧍=ā§Ļ.ā§Ļā§§×ā§Ļ.ā§Ļā§§

=ā§Ļ.ā§Ļā§Ļā§Ļā§§

=ā§§/ā§§ā§Ļā§Ļā§Ļā§Ļ

ℹ️7. āĻĻুāχāϟি āϏংāĻ–্āϝাāϰ āϏāĻŽāώ্āϟি ā§­ā§Ļ āĻāĻŦং āĻ…āύ্āϤāϰāĻĢāϞ ā§§ā§Ļ āĻšāϞে āĻŦāĻĄ় āϏংāĻ–্āϝাāϟি

āωঃ ā§Ēā§Ļ

*āĻŦāĻĄ় āϏংāĻ–্āϝাāϟি=ā§­ā§Ļ+ā§§ā§Ļ

=ā§Žā§Ļ÷⧍

=ā§Ēā§Ļ

ℹ️8. āĻāĻ•āϟি āϏংāĻ–্āϝা ā§­ā§Ē⧍ āĻĨেāĻ•ে āϝāϤ āĻŦāĻĄ় ā§Žā§Šā§Ļ āĻĨেāĻ•ে āϤāϤ āĻ›োāϟ। āϏংāĻ–্āϝাāϟি āĻ•āϤ?

āωঃ ā§­ā§Žā§Ŧ

*āύিāϰ্āĻŖāϝ়ে āϏংāĻ–্āϝা=ā§­ā§Ē⧍+ā§Žā§Šā§Ļ

=ā§§ā§Ģ⧭⧍÷⧍

=ā§­ā§Žā§Ŧ

ℹ️9.āĻĻুāχāϟি āϏংāĻ–্āϝাāϰ āĻ—ুāĻŖāĻĢāϞ ā§§ā§Ģā§Šā§Ŧ āϏংāĻ–্āϝা āĻĻুāϟিāϰ āϞ āϏা āĻ—ু ⧝ā§Ŧ āĻšāϞে āĻ— āϏা āĻ—ু āĻ•āϤ?

āωঃ ā§§ā§Ŧ

* āϞ āϏা āĻ—ু × āĻ— āϏা āĻ—ু = āĻ—ুāύāĻĢāϞ

⧝ā§Ŧ×āĻ— āϏা āĻ—ু = ā§§ā§Ģā§Šā§Ŧ

āĻ— āϏা āĻ—ু = ā§§ā§Ģā§Šā§Ŧ÷⧝ā§Ŧ

=ā§§ā§Ŧ

ℹ️10. āĻ…āύুāĻĒাāϤ āĻ•ি?

āωঃ āĻāĻ•āϟি āĻ­āĻ—্āύাংāĻļ

ℹ️11. ⧍ā§Ē āĻ•ে ā§­:ā§Ŧ āĻ…āύুāĻĒাāϤে āĻŦৃāĻĻ্āϧি āĻ•āϰāϞে āύāϤুāύ āϏংāĻ–্āϝা āĻšāĻŦে?

āωঃ ā§¨ā§Ž

*āύāϤুāύ āϏংāĻ–্āϝা÷⧍ā§Ē=ā§­/ā§Ŧ

āύāϤুāύ āϏংāĻ–্āϝা =ā§­×⧍ā§Ē÷ā§Ŧ

=ā§­×ā§Ē

=ā§¨ā§Ž

ℹ️12. ā§§ āĻĨেāĻ•ে ā§Ē⧝ āĻĒāϰ্āϝāύ্āϤ āĻ•্āϰāĻŽিāĻ• āϏংāĻ–্āϝা āĻ—ুāϞোāϰ āĻ—āĻĄ় āĻ•āϤ?

āωঃ ⧍ā§Ģ

*āύিāϰ্āĻŖāϝ়ে āĻ—āĻĄ়=

āĻļেāώāĻĒāĻĻ +āĻĒ্āϰāĻĨāĻŽ āĻĒāĻĻ÷⧍

ā§Ē⧝+ā§§=ā§Ģā§Ļ÷⧍=⧍ā§Ģ

ℹ️13.ā§§ āĻĨেāĻ•ে ⧝⧝ āĻĒāϰ্āϝāύ্āϤ āϏংāĻ–্āϝাāĻ—ুāϞোāϰ āϏāĻŽāώ্āϟি āĻ•āϤ?

āωঃ ā§Ē⧝ā§Ģā§Ļ

*āϏāĻŽāώ্āϟি=n(n+ā§§)÷⧍

=⧝⧝(⧝⧝+ā§§)÷⧍

=⧝⧝×ā§§ā§Ļā§Ļ÷⧍

=⧝⧝×ā§Ģā§Ļ

=ā§Ē⧝ā§Ģā§Ļ

-----------------------------------------------------

📚1 āĻĢুāϟ = 12 āχāĻž্āϚি

1 āĻ—āϜ = 3 āĻĢুāϟ

1 āĻŽাāχāϞ = ā§§ā§­ā§Ŧā§Ļ āĻ—āϜ

1 āĻŽাāχāϞ ≈ 1.61 āĻ•িāϞোāĻŽিāϟাāϰ

1 āχāĻž্āϚি = 2.54 āϏেāύ্āϟিāĻŽিāϟাāϰ

1 āĻĢুāϟ = 0.3048 āĻŽিāϟাāϰ

1 āĻŽিāϟাāϰ = 1,000 āĻŽিāϞিāĻŽিāϟাāϰ

1 āĻŽিāϟাāϰ = 100 āϏেāύ্āϟিāĻŽিāϟাāϰ

1 āĻ•িāϞোāĻŽিāϟাāϰ = 1,000 āĻŽিāϟাāϰ

1 āĻ•িāϞোāĻŽিāϟাāϰ ≈ 0.62 āĻŽাāχāϞ

📝āĻ•্āώেāϤ্āϰঃ

1 āĻŦāϰ্āĻ— āĻĢুāϟ = 144 āĻŦāϰ্āĻ— āχāĻž্āϚি

1 āĻŦāϰ্āĻ— āĻ—āϜ = 9 āĻŦāϰ্āĻ— āĻĢুāϟ

1 āĻāĻ•āϰ = 43560 āĻŦāϰ্āĻ— āĻĢুāϟ

📝 āφāϝ়āϤāύঃ

1 āϞিāϟাāϰ ≈ 0.264 āĻ—্āϝাāϞāύ

1 āϘāύ āĻĢুāϟ = 1.728 āϘāύ āχāĻž্āϚি

1 āϘāύ āĻ—āϜ = 27 āϘāύ āĻĢুāϟ

📝 āĻ“āϜāύঃ

1 āφāωāύ্āϏ ≈ 28.350 āĻ—্āϰাāĻŽ

1 cvDÛ= 16 āφāωāύ্āϏ

1 cvDÛ ≈ 453.592 āĻ—্āϰাāĻŽ

1 āĻāĻ• āĻ—্āϰাāĻŽেāϰ āĻāϰ্āĻ•āϏāĻšāϏ্āϰাংāĻļ = 0.001āĻ—্āϰাāĻŽ

1 āĻ•িāϞোāĻ—্āϰাāĻŽ = 1,000 āĻ—্āϰাāĻŽ

1 āĻ•িāϞোāĻ—্āϰাāĻŽ ≈ 2.2 āĻĒাāωāύ্āĻĄ

1 āϟāύ = 2,200 āĻĒাāωāύ্āĻĄ

📚 āĻŽিāϞিāϝ়āύ, āĻŦিāϞিāϝ়āύ, āϟ্āϰিāϞিāϝ়āύ āĻšিāϏাāĻŦ

ā§§ āĻŽিāϞিāϝ়āύ=ā§§ā§Ļ āϞāĻ•্āώ

ā§§ā§Ļ āĻŽিāϞিāϝ়āύ=ā§§ āĻ•োāϟি

ā§§ā§Ļā§Ļ āĻŽিāϞিāϝ়āύ=ā§§ā§Ļ āĻ•োāϟি

ā§§,ā§Ļā§Ļā§Ļ āĻŽিāϞিāϝ়āύ=ā§§ā§Ļā§Ļ āĻ•োāϟি

āφāĻŦাāϰ,

ā§§,ā§Ļā§Ļā§Ļ āĻŽিāϞিāϝ়āύ= ā§§ āĻŦিāϞিāϝ়āύ

ā§§ āĻŦিāϞিāϝ়āύ=ā§§ā§Ļā§Ļ āĻ•োāϟি

ā§§ā§Ļ āĻŦিāϞিāϝ়āύ=ā§§,ā§Ļā§Ļā§Ļ āĻ•োāϟি

ā§§ā§Ļā§Ļ āĻŦিāϞিāϝ়āύ=ā§§ā§Ļ,ā§Ļā§Ļā§Ļ āĻ•োāϟি

ā§§,ā§Ļā§Ļā§Ļ āĻŦিāϞিāϝ়āύ=ā§§ āϞāĻ•্āώ āĻ•োāϟি

āφāĻŦাāϰ,

ā§§,ā§Ļā§Ļā§Ļ āĻŦিāϞিāϝ়āύ=ā§§ āϟ্āϰিāϞিāϝ়āύ

ā§§ āϟ্āϰিāϞিāϝ়āύ=ā§§ āϞāĻ•্āώ āĻ•োāϟি

ā§§ā§Ļ āϟ্āϰিāϞিāϝ়āύ=ā§§ā§Ļ āϞāĻ•্āώ āĻ•োāϟি

ā§§ā§Ļā§Ļ āϟ্āϰিāϞিāϝ়āύ=ā§§ā§Ļā§Ļ āϞāĻ•্āώ āĻ•োāϟি

ā§§,ā§Ļā§Ļā§Ļ āϟ্āϰিāϞিāϝ়āύ=ā§§,ā§Ļā§Ļā§Ļ āϞāĻ•্āώ āĻ•োāϟি।

-----------------------------

ā§§ āϰিāĻŽ = ⧍ā§Ļ āĻĻিāϏ্āϤা = ā§Ģā§Ļā§Ļ āϤা

ā§§ āĻ­āϰি = ā§§ā§Ŧ āφāύা ;

ā§§ āφāύা = ā§Ŧ āϰāϤি

ā§§ āĻ—āϜ = ā§Š āĻĢুāϟ = ⧍ āĻšাāϤ

ā§§ āĻ•েāϜি = ā§§ā§Ļā§Ļā§Ļ āĻ—্āϰাāĻŽ

ā§§ āĻ•ুāχāύ্āϟাāϞ = ā§§ā§Ļā§Ļ āĻ•েāϜি

ā§§ āĻŽেāϟ্āϰিāĻ• āϟāύ = ā§§ā§Ļ āĻ•ুāχāύ্āϟাāϞ = ā§§ā§Ļā§Ļā§Ļ āĻ•েāϜি

ā§§ āϞিāϟাāϰ = ā§§ā§Ļā§Ļā§Ļ āϏিāϏি

ā§§ āĻŽāĻŖ = ā§Ēā§Ļ āϏেāϰ

ā§§ āĻŦিāϘা = ⧍ā§Ļ āĻ•াāĻ া( ā§Šā§Š āĻļāϤাংāĻļ) ;

ā§§ āĻ•াāĻ া = ⧭⧍ā§Ļ āĻŦāϰ্āĻ—āĻĢুāϟ (ā§Žā§Ļ āĻŦāϰ্āĻ— āĻ—āϜ)

1 āĻŽিāϞিāϝ়āύ = 10 āϞāĻ•্āώ

1 āĻŽাāχāϞ = 1.61 āĻ•ি.āĻŽি ;

1 āĻ•ি.āĻŽি. = 0..62

1 āχāĻž্āϚি = 2.54 āϏে.āĻŽি ;

1 āĻŽিāϟাāϰ = 39.37 āχāĻž্āϚি

1 āĻ•ে.āϜি = 2.20 āĻĒাāωāύ্āĻĄ ;

1 āϏেāϰ = 0.93 āĻ•িāϞোāĻ—্āϰাāĻŽ

1 āĻŽে. āϟāύ = 1000 āĻ•িāϞোāĻ—্āϰাāĻŽ ;

1 āĻĒাāωāύ্āĻĄ = 16 āφāωāύ্āϏ

1 āĻ—āϜ= 3 āĻĢুāϟ ;

1 āĻāĻ•āϰ = 100 āĻļāϤāĻ•

1 āĻŦāϰ্āĻ— āĻ•ি.āĻŽি.= 247 āĻāĻ•āϰ

āĻĒ্āϰāĻļ্āύঃ ā§§ āĻ•িāĻŽি āϏāĻŽাāύ āĻ•āϤ āĻŽাāχāϞ ?

āωāϤ্āϤāϰঃ ā§Ļ.ā§Ŧ⧍ āĻŽাāχāϞ।

āĻĒ্āϰāĻļ্āύঃ ā§§ āύেāϟিāĻ•্āϝাāϞ āĻŽাāχāϞে āĻ•āϤ āĻŽিāϟাāϰ ?

āωāϤ্āϤāϰঃ ā§§ā§Žā§Ģā§Š.ā§¨ā§Ž āĻŽিāϟাāϰ।

āĻĒ্āϰāĻļ্āύঃ āϏāĻŽুāĻĻ্āϰেāϰ āϜāϞেāϰ āĻ—āĻ­ীāϰāϤা āĻŽাāĻĒাāϰ

āĻāĻ•āĻ• ?

āωāϤ্āϤāϰঃ āĻĢ্āϝাāĻĻāĻŽ।

āĻĒ্āϰāĻļ্āύঃ ā§§.ā§Ģ āχāĻž্āϚি ā§§ āĻĢুāϟেāϰ āĻ•āϤ āĻ…ংāĻļ?

āωāϤ্āϤāϰঃ ā§§/ā§Ž āĻ…ংāĻļ।

ā§§āĻŽাāχāϞ =ā§§ā§­ā§Ŧā§Ļ āĻ—āϜ।]

āĻĒ্āϰāĻļ্āύঃ āĻāĻ• āĻŦāϰ্āĻ— āĻ•িāϞোāĻŽিāϟাāϰ āĻ•āϤ āĻāĻ•āϰ?

āωāϤ্āϤāϰঃ ⧍ā§Ēā§­ āĻāĻ•āϰ।

āĻĒ্āϰāĻļ্āύঃ āĻāĻ•āϟি āϜāĻŽিāϰ āĻĒāϰিāĻŽাāύ ā§Ģ āĻ•াāĻ া āĻšāϞে,

āϤা āĻ•āϤ āĻŦāϰ্āĻ—āĻĢুāϟ āĻšāĻŦে?

āωāϤ্āϤāϰঃ ā§Šā§Ŧā§Ļā§Ļ āĻŦāϰ্āĻ—āĻĢুāϟ।

āĻĒ্āϰāĻļ্āύঃ āĻāĻ• āĻŦāϰ্āĻ— āχāĻž্āϚিāϤে āĻ•āϤ āĻŦāϰ্āĻ—

āϏেāύ্āϟিāĻŽিāϟাāϰ?

āωāϤ্āϤāϰঃ ā§Ŧ.ā§Ēā§Ģ āϏেāύ্āϟিāĻŽিāϟাāϰ।

āĻĒ্āϰāĻļ্āύঃ ā§§ āϘāύ āĻŽিāϟাāϰ = āĻ•āϤ āϞিāϟাāϰ?

āωāϤ্āϤāϰঃ ā§§ā§Ļā§Ļā§Ļ āϞিāϟাāϰ।

āĻĒ্āϰāĻļ্āύঃ āĻāĻ• āĻ—্āϝাāϞāύে āĻ•āϝ় āϞিāϟাāϰ?

āωāϤ্āϤāϰঃ ā§Ē.ā§Ģā§Ģ āϞিāϟাāϰ।

āĻĒ্āϰāĻļ্āύঃ ā§§ āϏেāϰ āϏāĻŽাāύ āĻ•āϤ āĻ•েāϜি?

āωāϤ্āϤāϰঃ ā§Ļ.ā§¯ā§Š āĻ•েāϜি।

āĻĒ্āϰāĻļ্āύঃ ā§§ āĻŽāĻŖে āĻ•āϤ āĻ•েāϜি?

āωāϤ্āϤāϰঃ ā§Šā§­.ā§Šā§¨ āĻ•েāϜি।

āĻĒ্āϰāĻļ্āύঃ ā§§ āϟāύে āĻ•āϤ āĻ•েāϜি?

āωāϤ্āϤāϰঃ ā§§ā§Ļā§Ļā§Ļ āĻ•েāϜি।

āĻĒ্āϰāĻļ্āύঃ ā§§ āĻ•েāϜিāϤে āĻ•āϤ āĻĒাāωāύ্āĻĄ??

āωāϤ্āϤāϰঃ ⧍.⧍ā§Ļā§Ē āĻĒাāωāύ্āĻĄ।

āĻĒ্āϰāĻļ্āύঃ ā§§ āĻ•ুāχāύ্āϟাāϞে āĻ•āϤ āĻ•েāϜি?

āωāϤ্āϤāϰঃ ā§§ā§Ļā§ĻāĻ•েāϜি।

--------------------------------

📑British & U.S British U.S

1 gallons = 4.5434 litres = 4.404

litres

2 gallons = 1 peck = 9.8070 litres

= 8.810 litres

-----------------------------------------

📝āĻ•্āϝাāϰেāϟ āĻ•ি?.

āωāϤ্āϤāϰঃ āĻŽূāϞ্āϝāĻŦাāύ āĻĒাāĻĨāϰ āĻ“ āϧাāϤুāϏাāĻŽāĻ—্āϰী

āĻĒāϰিāĻŽাāĻĒেāϰ āĻāĻ•āĻ• āĻ•্āϝাāϰেāϟ ।

1 āĻ•্āϝাāϰেāϟ =0 .2 āĻ—্āϰাāĻŽ

📝āĻŦেāϞ āĻ•ি?

āωāϤ্āϤāϰঃ āĻĒাāϟ āĻŦা āϤুāϞা āĻĒāϰিāĻŽাāĻĒেāϰ āϏāĻŽāϝ় ‘āĻŦেāϞ’

āĻāĻ•āĻ• āĻšিāϏাāĻŦে āĻŦ্āϝāĻŦāĻšৃāϤ āĻšāϝ় ।

1 āĻŦেāϞ = 3.5 āĻŽāĻŖ (āĻĒ্āϰাāϝ়) ।

Happy learning with Noor E Alam, University of Dhaka 

No comments:

Verbs