Math formula

 āĻ—āĻŖিāϤ āĻāϰ āϏāĻ•āϞ āϏূāϤ্āϰ 

āĻŦীāϜāĻ—াāĻŖিāϤিāĻ• āϏূāϤ্āϰাāĻŦāϞী

• (a+b)²= a²+2ab+b²

• (a+b)²= (a-b)²+4ab

• (a-b)²= a²-2ab+b²

• (a-b)²= (a+b)²-4ab

• a² + b²= (a+b)²-2ab

• a² + b²= (a-b)²+2ab

• a²-b²= (a +b)(a -b)

• 2(a²+b²)= (a+b)²+(a-b)²

• 4ab = (a+b)²-(a-b)²

• ab = {(a+b)/2}²-{(a-b)/2}²

• (a+b+c)² = a²+b²+c²+2(ab+bc+ca)

• (a+b)³ = a³+3a²b+3ab²+b³

• (a+b)³ = a³+b³+3ab(a+b)

• a-b)³= a³-3a²b+3ab²-b³

• (a-b)³= a³-b³-3ab(a-b)

• a³+b³= (a+b) (a²-ab+b²)

• a³+b³= (a+b)³-3ab(a+b)

•  a³-b³ = (a-b) (a²+ab+b²)

• a³-b³ = (a-b)³+3ab(a-b)

• (a² + b² + c²) = (a + b + c)² – 2(ab + bc + ca)

• 2 (ab + bc + ca) = (a + b + c)² – (a² + b² + c²)

• (a + b + c)³ = a³ + b³ + c³ + 3 (a + b) (b + c) (c + a)

• a³ + b³ + c³ – 3abc =(a+b+c)(a² + b²+ c²–ab–bc– ca)

• a3 + b3 + c3 – 3abc =½ (a+b+c) { (a–b)²+(b–c)²+(c–a)²}

• (x + a) (x + b) = x² + (a + b) x + ab

• (x + a) (x – b) = x² + (a – b) x – ab

• (x – a) (x + b) = x² + (b – a) x – ab

• (x – a) (x – b) = x² – (a + b) x + ab

• (x+p) (x+q) (x+r) = x³ + (p+q+r) x² + (pq+qr+rp) x +pqr

• bc (b-c) + ca (c- a) + ab (a – b) = – (b – c) (c- a) (a – b)

• a² (b- c) + b² (c- a) + c² (a – b) = -(b-c) (c-a) (a – b)

• a (b² – c²) + b (c² – a²) + c (a² – b²) = (b – c) (c- a) (a – b)

• a³ (b – c) + b³ (c-a) +c³ (a -b) =- (b-c) (c-a) (a – b)(a + b + c)

• b²-c² (b²-c²) + c²a²(c²-a²)+a²b²(a²-b²)=-(b-c) (c-a) (a-b) (b+c) (c+a) (a+b)

• (ab + bc+ca) (a+b+c) – abc = (a + b)(b + c) (c+a)

• (b + c)(c + a)(a + b) + abc = (a + b +c) (ab + bc + ca)

āφāϝ়āϤāĻ•্āώেāϤ্āϰ

• āφāϝ়āϤāĻ•্āώেāϤ্āϰেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = (āĻĻৈāϰ্āϘ্āϝ × āĻĒ্āϰāϏ্āĻĨ) āĻŦāϰ্āĻ— āĻāĻ•āĻ•

• āφāϝ়āϤāĻ•্āώেāϤ্āϰেāϰ āĻĒāϰিāϏীāĻŽা = 2 (āĻĻৈāϰ্āϘ্āϝ+āĻĒ্āϰāϏ্āĻĨ)āĻāĻ•āĻ•

• āφāϝ়āϤāĻ•্āώেāϤ্āϰেāϰ āĻ•āϰ্āĻŖ = √(āĻĻৈāϰ্āϘ্āϝ²+āĻĒ্āϰāϏ্āĻĨ²)āĻāĻ•āĻ•

• āφāϝ়āϤāĻ•্āώেāϤ্āϰেāϰ āĻĻৈāϰ্āϘ্āϝ= āĻ•্āώেāϤ্āϰāĻĢāϞ÷āĻĒ্āϰāϏ্āϤ āĻāĻ•āĻ•

• āφāϝ়āϤāĻ•্āώেāϤ্āϰেāϰ āĻĒ্āϰāϏ্āϤ= āĻ•্āώেāϤ্āϰāĻĢāϞ÷āĻĻৈāϰ্āϘ্āϝ āĻāĻ•āĻ•

āĻŦāϰ্āĻ—āĻ•্āώেāϤ্āϰ

• āĻŦāϰ্āĻ—āĻ•্āώেāϤ্āϰেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = (āϝে āĻ•োāύ āĻāĻ•āϟি āĻŦাāĻšুāϰ āĻĻৈāϰ্āϘ্āϝ)² āĻŦāϰ্āĻ— āĻāĻ•āĻ•

• āĻŦāϰ্āĻ—āĻ•্āώেāϤ্āϰেāϰ āĻĒāϰিāϏীāĻŽা = 4 × āĻāĻ• āĻŦাāĻšুāϰ āĻĻৈāϰ্āϘ্āϝ āĻāĻ•āĻ•

• āĻŦāϰ্āĻ—āĻ•্āώেāϤ্āϰেāϰ āĻ•āϰ্āĻŖ=√2 × āĻāĻ• āĻŦাāĻšুāϰ āĻĻৈāϰ্āϘ্āϝ āĻāĻ•āĻ•

• āĻŦāϰ্āĻ—āĻ•্āώেāϤ্āϰেāϰ āĻŦাāĻšু=√āĻ•্āώেāϤ্āϰāĻĢāϞ āĻŦা āĻĒāϰিāϏীāĻŽা÷4 āĻāĻ•āĻ•

āϤ্āϰিāĻ­ূāϜ

• āϏāĻŽāĻŦাāĻšু āϤ্āϰিāĻ­ূāϜেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = √¾×(āĻŦাāĻšু)²

• āϏāĻŽāĻŦাāĻšু āϤ্āϰিāĻ­ূāϜেāϰ āωāϚ্āϚāϤা = √3/2×(āĻŦাāĻšু)

• āĻŦিāώāĻŽāĻŦাāĻšু āϤ্āϰিāĻ­ুāϜেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = √s(s-a) (s-b) (s-c)

āĻāĻ–াāύে a, b, c āϤ্āϰিāĻ­ুāϜেāϰ āϤিāύāϟি āĻŦাāĻšুāϰ āĻĻৈāϰ্āϘ্āϝ, s=āĻ…āϰ্āϧāĻĒāϰিāϏীāĻŽা

• āĻĒāϰিāϏীāĻŽা 2s=(a+b+c)

• āϏাāϧাāϰāĻŖ āϤ্āϰিāĻ­ূāϜেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = ½

(āĻ­ূāĻŽি×āωāϚ্āϚāϤা) āĻŦāϰ্āĻ— āĻāĻ•āĻ•

• āϏāĻŽāĻ•োāĻŖী āϤ্āϰিāĻ­ূāϜেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = ½(a×b)

āĻāĻ–াāύে āϤ্āϰিāĻ­ুāϜেāϰ āϏāĻŽāĻ•োāĻŖ āϏংāϞāĻ—্āύ āĻŦাāĻšুāĻĻ্āĻŦāϝ় a āĻāĻŦং b.

• āϏāĻŽāĻĻ্āĻŦিāĻŦাāĻšু āϤ্āϰিāĻ­ূāϜেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = 2√4b²-a²/4 āĻāĻ–াāύে, a= āĻ­ূāĻŽি; b= āĻ…āĻĒāϰ āĻŦাāĻšু।

• āϤ্āϰিāĻ­ুāϜেāϰ āωāϚ্āϚāϤা = 2(āĻ•্āώেāϤ্āϰāĻĢāϞ/āĻ­ূāĻŽি)

• āϏāĻŽāĻ•োāĻŖী āϤ্āϰিāĻ­ুāϜেāϰ āĻ…āϤিāĻ­ুāϜ =√ āϞāĻŽ্āĻŦ²+āĻ­ূāĻŽি²

• āϞāĻŽ্āĻŦ =√āĻ…āϤিāĻ­ূāϜ²-āĻ­ূāĻŽি²

• āĻ­ূāĻŽি = √āĻ…āϤিāĻ­ূāϜ²-āϞāĻŽ্āĻŦ²

• āϏāĻŽāĻĻ্āĻŦিāĻŦাāĻšু āϤ্āϰিāĻ­ুāϜেāϰ āωāϚ্āϚāϤা = √b² – a²/4

āĻāĻ–াāύে a= āĻ­ূāĻŽি; b= āϏāĻŽাāύ āĻĻুāχ āĻŦাāĻšুāϰ āĻĻৈāϰ্āϘ্āϝ।

• āϤ্āϰিāĻ­ুāϜেāϰ āĻĒāϰিāϏীāĻŽা=āϤিāύ āĻŦাāĻšুāϰ āϏāĻŽāώ্āϟি


āϰāĻŽ্āĻŦāϏ

• āϰāĻŽ্āĻŦāϏেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = ½× (āĻ•āϰ্āĻŖāĻĻুāχāϟিāϰ āĻ—ুāĻŖāĻĢāϞ)

• āϰāĻŽ্āĻŦāϏেāϰ āĻĒāϰিāϏীāĻŽা = 4× āĻāĻ• āĻŦাāĻšুāϰ āĻĻৈāϰ্āϘ্āϝ

āϏাāĻŽাāύ্āϤāϰিāĻ•

• āϏাāĻŽাāύ্āϤāϰিāĻ•েāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = āĻ­ূāĻŽি × āωāϚ্āϚāϤা =

• āϏাāĻŽাāύ্āϤāϰিāĻ•েāϰ āĻĒāϰিāϏীāĻŽা = 2×(āϏāύ্āύিāĻšিāϤ āĻŦাāĻšুāĻĻ্āĻŦāϝ়েāϰ āϏāĻŽāώ্āϟি)

āϟ্āϰাāĻĒিāϜিāϝ়াāĻŽ

• āϟ্āϰাāĻĒিāϜিāϝ়াāĻŽেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ =½×(āϏāĻŽাāύ্āϤāϰাāϞ āĻŦাāĻšু āĻĻুāχāϟিāϰ āϝােāĻ—āĻĢāϞ)×āωāϚ্āϚāϤা

āϘāύāĻ•

• āϘāύāĻ•েāϰ āϘāύāĻĢāϞ = (āϝেāĻ•োāύ āĻŦাāĻšু)³ āϘāύ āĻāĻ•āĻ•

• āϘāύāĻ•েāϰ āϏāĻŽāĻ—্āϰāϤāϞেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = 6× āĻŦাāĻšু² āĻŦāϰ্āĻ— āĻāĻ•āĻ•

• āϘāύāĻ•েāϰ āĻ•āϰ্āĻŖ = √3×āĻŦাāĻšু āĻāĻ•āĻ•

āφāϝ়āϤāϘāύāĻ•

• āφāϝ়āϤāϘāύāĻ•েāϰ āϘāύāĻĢāϞ = (āĻĻৈā§°্āϘা×āĻĒ্āϰāϏ্āϤ×āωāϚ্āϚāϤা) āϘāύ āĻāĻ•āĻ•

• āφāϝ়āϤāϘāύāĻ•েāϰ āϏāĻŽāĻ—্āϰāϤāϞেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = 2(ab + bc + ca) āĻŦāϰ্āĻ— āĻāĻ•āĻ•

[ āϝেāĻ–াāύে a = āĻĻৈāϰ্āϘ্āϝ b = āĻĒ্āϰāϏ্āϤ c = āωāϚ্āϚāϤা ]

• āφāϝ়āϤāϘāύāĻ•েāϰ āĻ•āϰ্āĻŖ = √a²+b²+c² āĻāĻ•āĻ•

• āϚাāϰি āĻĻেāĻ“āϝ়াāϞেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = 2(āĻĻৈāϰ্āϘ্āϝ + āĻĒ্āϰāϏ্āĻĨ)×āωāϚ্āϚāϤা

āĻŦৃāϤ্āϤ

• āĻŦৃāϤ্āϤেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = Ī€r²=22/7r² {āĻāĻ–াāύে Ī€=āϧ্āϰুāĻŦāĻ• 22/7, āĻŦৃāϤ্āϤেāϰ āĻŦ্āϝাāϏাāϰ্āϧ= r}

• āĻŦৃāϤ্āϤেāϰ āĻĒāϰিāϧি = 2Ī€r

• āĻ—োāϞāĻ•েāϰ āĻĒৃāώ্āĻ āϤāϞেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = 4Ī€r² āĻŦāϰ্āĻ— āĻāĻ•āĻ•

• āĻ—োāϞāĻ•েāϰ āφāϝ়āϤāύ = 4Ī€r³÷3 āϘāύ āĻāĻ•āĻ•

• h āωāϚ্āϚāϤাāϝ় āϤāϞāϚ্āϚেāĻĻে āĻ‰ā§ŽāĻĒāύ্āύ āĻŦৃāϤ্āϤেāϰ āĻŦ্āϝাāϏাāϰ্āϧ = √r²-h² āĻāĻ•āĻ•

• āĻŦৃāϤ্āϤāϚাāĻĒেāϰ āĻĻৈāϰ্āϘ্āϝ s=Ī€rθ/180° ,

āĻāĻ–াāύে θ =āĻ•োāĻŖ

āϏāĻŽāĻŦৃāϤ্āϤāĻ­ূāĻŽিāĻ• āϏিāϞিāύ্āĻĄাāϰ / āĻŦেāϞāύ

āϏāĻŽāĻŦৃāϤ্āϤāĻ­ূāĻŽিāĻ• āϏিāϞিāύ্āĻĄাāϰেāϰ āĻ­ূāĻŽিāϰ āĻŦ্āϝাāϏাāϰ্āϧ r āĻāĻŦং āωāϚ্āϚāϤা h āφāϰ āĻšেāϞাāύো āϤāϞেāϰ āωāϚ্āϚāϤা l āĻšāϞে,

• āϏিāϞিāύ্āĻĄাāϰেāϰ āφāϝ়āϤāύ = Ī€r²h

• āϏিāϞিāύ্āĻĄাāϰেāϰ āĻŦāĻ•্āϰāϤāϞেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ (āϏিāĻāϏāĻ) = 2Ī€rh।

• āϏিāϞিāύ্āĻĄাāϰেāϰ āĻĒৃāώ্āĻ āϤāϞেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ (āϟিāĻāϏāĻ) = 2Ī€r (h + r)

āϏāĻŽāĻŦৃāϤ্āϤāĻ­ূāĻŽিāĻ• āĻ•োāĻŖāĻ•

āϏāĻŽāĻŦৃāϤ্āϤāĻ­ূāĻŽিāĻ• āĻ­ূāĻŽিāϰ āĻŦ্āϝাāϏাāϰ্āϧ r āĻāĻŦং āωāϚ্āϚāϤা h āφāϰ āĻšেāϞাāύো āϤāϞেāϰ āωāϚ্āϚāϤা l āĻšāϞে,

• āĻ•োāĻŖāĻ•েāϰ āĻŦāĻ•্āϰāϤāϞেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ= Ī€rl āĻŦāϰ্āĻ— āĻāĻ•āĻ•

• āĻ•োāĻŖāĻ•েāϰ āϏāĻŽāϤāϞেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ= Ī€r(r+l) āĻŦāϰ্āĻ— āĻāĻ•āĻ•

• āĻ•োāĻŖāĻ•েāϰ āφāϝ়āϤāύ= ⅓Ī€r²h āϘāύ āĻāĻ•āĻ•

āφāϰāĻ“ āĻ•িāĻ›ু,

• āĻŦāĻšুāĻ­ুāϜেāϰ āĻ•āϰ্āĻŖেāϰ āϏংāĻ–্āϝা= n(n-3)/2

• āĻŦāĻšুāĻ­ুāϜেāϰ āĻ•োāĻŖāĻ—ুāϞিāϰ āϏāĻŽāώ্āϟি=(2n-4)āϏāĻŽāĻ•োāĻŖ,āĻāĻ–াāύে n=āĻŦাāĻšুāϰ āϏংāĻ–্āϝা

• āϚāϤুāϰ্āĻ­ুāϜেāϰ āĻĒāϰিāϏীāĻŽা=āϚাāϰ āĻŦাāĻšুāϰ āϏāĻŽāώ্āϟি

āϤ্āϰিāĻ•োāĻŖāĻŽিāϤিāϰ āϏূāϤ্āϰাāĻŦāϞী

• sinθ=⤞āĻŽ্āĻŦ/āĻ…āϤিāĻ­ূāϜ

• cosθ=āĻ­ূāĻŽি/āĻ…āϤিāĻ­ূāϜ

• taneθ=⤞āĻŽ্āĻŦ/āĻ­ূāĻŽি

• cotθ=āĻ­ূāĻŽি/āϞāĻŽ্āĻŦ

• secθ=āĻ…āϤিāĻ­ূāϜ/āĻ­ূāĻŽি

• cosecθ=āĻ…āϤিāĻ­ূāϜ/āϞāĻŽ্āĻŦ

• sinθ=1/cosecθ, cosecθ=1/sinθ

• cosθ=1/secθ, secθ=1/cosθ

• tanθ=1/cotθ, cotθ=1/tanθ

• sin²Î¸ + cos²Î¸= 1

• sin²Î¸ = 1 – cos²Î¸

• cos²Î¸ = 1- sin²Î¸

• sec²Î¸ – tan²Î¸ = 1

• sec²Î¸ = 1+ tan²Î¸

• tan²Î¸ = sec²Î¸ – 1

• cosec²Î¸ – cot²Î¸ = 1

• cosec²Î¸ = cot²Î¸ + 1

• cot²Î¸ = cosec²Î¸ – 1

 āĻŦিāϝ়ােāĻ—েāϰ āϏূāϤ্āϰাāĻŦāϞি

• āĻŦিāϝ়ােāϜāύ-āĻŦিāϝ়োāϜ্āϝ =āĻŦিāϝ়োāĻ—āĻĢāϞ।

• āĻŦিāϝ়ােāϜāύ=āĻŦিāϝ়ােāĻ—āĻĢ + āĻŦিāϝ়ােāϜ্āϝ

• āĻŦিāϝ়ােāϜ্āϝ=āĻŦিāϝ়ােāϜāύ-āĻŦিāϝ়ােāĻ—āĻĢāϞ

āĻ—ুāĻŖেāϰ āϏূāϤ্āϰাāĻŦāϞি

• āĻ—ুāĻŖāĻĢāϞ =āĻ—ুāĻŖ্āϝ × āĻ—ুāĻŖāĻ•

• āĻ—ুāĻŖāĻ• = āĻ—ুāĻŖāĻĢāϞ ÷ āĻ—ুāĻŖ্āϝ

• āĻ—ুāĻŖ্āϝ= āĻ—ুāĻŖāĻĢāϞ ÷ āĻ—ুāĻŖāĻ•

 āĻ­াāĻ—েāϰ āϏূāϤ্āϰাāĻŦāϞি

āύিঃāĻļেāώে āĻŦিāĻ­াāϜ্āϝ āύা āĻšāϞে;

• āĻ­াāϜ্āϝ= āĻ­াāϜāĻ• × āĻ­াāĻ—āĻĢāϞ + āĻ­াāĻ—āĻļেāώ।

• āĻ­াāϜ্āϝ= (āĻ­াāϜ্āϝ— āĻ­াāĻ—āĻļেāώ) ÷ āĻ­াāĻ—āĻĢāϞ।

• āĻ­াāĻ—āĻĢāϞ = (āĻ­াāϜ্āϝ — āĻ­াāĻ—āĻļেāώ)÷ āĻ­াāϜāĻ•।

āύিঃāĻļেāώে āĻŦিāĻ­াāϜ্āϝ āĻšāϞে;

• āĻ­াāϜāĻ•= āĻ­াāϜ্āϝ÷ āĻ­াāĻ—āĻĢāϞ।

• āĻ­াāĻ—āĻĢāϞ = āĻ­াāϜ্āϝ ÷ āĻ­াāϜāĻ•।

• āĻ­াāϜ্āϝ = āĻ­াāϜāĻ• × āĻ­াāĻ—āĻĢāϞ।

āĻ­āĻ—্āύাংāĻļেāϰ āϞ.āϏা.āĻ—ু āĻ“ āĻ—.āϏা.āĻ—ু āϏূāϤ্āϰাāĻŦāϞী

• āĻ­āĻ—্āύাংāĻļেāϰ āĻ—.āϏা.āĻ—ু = āϞāĻŦāĻ—ুāϞােāϰ āĻ—.āϏা.āĻ—ু / āĻšāϰāĻ—ুāϞােāϰ āϞ.āϏা.āĻ—ু

• āĻ­āĻ—্āύাংāĻļেāϰ āϞ.āϏা.āĻ—ু =āϞāĻŦāĻ—ুāϞােāϰ āϞ.āϏা.āĻ—ু /āĻšāϰāĻ—ুāϞাāϰ āĻ—.āϏা.āĻ—ু

• āĻ­āĻ—্āύাংāĻļāĻĻ্āĻŦāϝ়েāϰ āĻ—ুāĻŖāĻĢāϞ = āĻ­āĻ—্āύাংāĻļāĻĻ্āĻŦāϝ়েāϰ āϞ.āϏা.āĻ—ু × āĻ­āĻ—্āύাংāĻļāĻĻ্āĻŦāϝ়েāϰ āĻ—.āϏা.āĻ—ু.

āĻ—āĻĄ় āύিāϰ্āĻŖāϝ়

• āĻ—āĻĄ় = āϰাāĻļি āϏāĻŽāώ্āϟি /āϰাāĻļি āϏংāĻ–্āϝা

• āϰাāĻļিāϰ āϏāĻŽāώ্āϟি = āĻ—āĻĄ় ×āϰাāĻļিāϰ āϏংāĻ–্āϝা

• āϰাāĻļিāϰ āϏংāĻ–্āϝা = āϰাāĻļিāϰ āϏāĻŽāώ্āϟি ÷ āĻ—āĻĄ়

• āφāϝ়েāϰ āĻ—āĻĄ় = āĻŽােāϟ āφāϝ়েāϰ āĻĒāϰিāĻŽাāĻŖ / āĻŽােāϟ āϞােāĻ•েāϰ āϏংāĻ–্āϝা

• āϏংāĻ–্āϝাāϰ āĻ—āĻĄ় = āϏংāĻ–্āϝাāĻ—ুāϞােāϰ āϝােāĻ—āĻĢāϞ /āϏংāĻ–্āϝাāϰ āĻĒāϰিāĻŽাāύ āĻŦা āϏংāĻ–্āϝা

• āĻ•্āϰāĻŽিāĻ• āϧাāϰাāϰ āĻ—āĻĄ় =āĻļেāώ āĻĒāĻĻ +ā§§āĻŽ āĻĒāĻĻ /2

āϏুāĻĻāĻ•āώাāϰ āĻĒāϰিāĻŽাāύ āύিāϰ্āύāϝ়েāϰ āϏূāϤ্āϰাāĻŦāϞী

• āϏুāĻĻ = (āϏুāĻĻেāϰ āĻšাāϰ×āφāϏāϞ×āϏāĻŽāϝ়) ÷ā§§ā§Ļā§Ļ

• āϏāĻŽāϝ় = (100× āϏুāĻĻ)÷ (āφāϏāϞ×āϏুāĻĻেāϰ āĻšাāϰ)

• āϏুāĻĻেāϰ āĻšাāϰ = (100×āϏুāĻĻ)÷(āφāϏāϞ×āϏāĻŽāϝ়)

• āφāϏāϞ = (100×āϏুāĻĻ)÷(āϏāĻŽāϝ়×āϏুāĻĻেāϰ āĻšাāϰ)

• āφāϏāϞ = {100×(āϏুāĻĻ-āĻŽূāϞ)}÷(100+āϏুāĻĻেāϰ āĻšাāϰ×āϏāĻŽāϝ় )

• āϏুāĻĻাāϏāϞ = āφāϏāϞ + āϏুāĻĻ

• āϏুāĻĻাāϏāϞ = āφāϏāϞ ×(1+ āϏুāĻĻেāϰ āĻšাāϰ)× āϏāĻŽāϝ় |[āϚāĻ•্āϰāĻŦৃāĻĻ্āϧি āϏুāĻĻেāϰ āĻ•্āώেāϤ্āϰে]।

āϞাāĻ­-āĻ•্āώāϤিāϰ āĻāĻŦং āĻ•্āϰāϝ়-āĻŦিāĻ•্āϰāϝ়েāϰ āϏূāϤ্āϰাāĻŦāϞী

• āϞাāĻ­ = āĻŦিāĻ•্āϰāϝ়āĻŽূāϞ্āϝ-āĻ•্āϰāϝ়āĻŽূāϞ্āϝ

• āĻ•্āώāϤি = āĻ•্āϰāϝ়āĻŽূāϞ্āϝ-āĻŦিāĻ•্āϰāϝ়āĻŽূāϞ্āϝ

• āĻ•্āϰāϝ়āĻŽূāϞ্āϝ = āĻŦিāĻ•্āϰāϝ়āĻŽূāϞ্āϝ-āϞাāĻ­

āĻ…āĻĨāĻŦা

āĻ•্āϰāϝ়āĻŽূāϞ্āϝ = āĻŦিāĻ•্āϰāϝ়āĻŽূāϞ্āϝ + āĻ•্āώāϤি

• āĻŦিāĻ•্āϰāϝ়āĻŽূāϞ্āϝ = āĻ•্āϰāϝ়āĻŽূāϞ্āϝ + āϞাāĻ­

āĻ…āĻĨāĻŦা

āĻŦিāĻ•্āϰāϝ়āĻŽূāϞ্āϝ = āĻ•্āϰāϝ়āĻŽূāϞ্āϝ-āĻ•্āώāϤি

1-100 āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝাāĻŽāύে āϰাāĻ–াāϰ āϏāĻšāϜ āωāĻĒাāϝ়

āĻļāϰ্āϟāĻ•াāϟ :- 44 -22 -322-321

• 1āĻĨেāĻ•ে100āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা=25āϟি

• 1āĻĨেāĻ•ে10āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা=4āϟি 2,3,5,7

• 11āĻĨেāĻ•ে20āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা=4āϟি 11,13,17,19

• 21āĻĨেāĻ•ে30āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা=2āϟি 23,29

• 31āĻĨেāĻ•ে40āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা=2āϟি 31,37

• 41āĻĨেāĻ•ে50āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা=3āϟি 41,43,47

• 51āĻĨেāĻ•ে 60āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা=2āϟি 53,59

• 61āĻĨেāĻ•ে70āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা=2āϟি 61,67

• 71āĻĨেāĻ•ে80 āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা=3āϟি 71,73,79

• 81āĻĨেāĻ•ে 90āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা=2āϟি 83,89

• 91āĻĨেāĻ•ে100āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা=1āϟি 97

• 1-100 āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা 25 āϟিঃ

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97

• 1-100āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝাāϰ āϝোāĻ—āĻĢāϞ

1060

āĻ—āϤিāĻŦেāĻ—

• āĻ•োāύ āĻ•িāĻ›ুāϰ āĻ—āϤিāĻŦেāĻ—= āĻ…āϤিāĻ•্āϰাāύ্āϤ āĻĻূāϰāϤ্āĻŦ/āϏāĻŽāϝ়

• āĻ…āϤিāĻ•্āϰাāύ্āϤ āĻĻূāϰāϤ্āĻŦ = āĻ—āϤিāĻŦেāĻ—×āϏāĻŽāϝ়

• āϏāĻŽāϝ়= āĻŽোāϟ āĻĻূāϰāϤ্āĻŦ/āĻŦেāĻ—

• āϏ্āϰোāϤেāϰ āĻ…āύুāĻ•ূāϞে āύৌāĻ•াāϰ āĻ•াāϰ্āϝāĻ•āϰী āĻ—āϤিāĻŦেāĻ— = āύৌāĻ•াāϰ āĻĒ্āϰāĻ•ৃāϤ āĻ—āϤিāĻŦেāĻ— + āϏ্āϰোāϤেāϰ āĻ—āϤিāĻŦেāĻ—।

• āϏ্āϰোāϤেāϰ āĻĒ্āϰāϤিāĻ•ূāϞে āύৌāĻ•াāϰ āĻ•াāϰ্āϝāĻ•āϰী āĻ—āϤিāĻŦেāĻ— = āύৌāĻ•াāϰ āĻĒ্āϰāĻ•ৃāϤ āĻ—āϤিāĻŦেāĻ— – āϏ্āϰোāϤেāϰ āĻ—āϤিāĻŦেāĻ—

āϏāϰāϞ āϏুāĻĻ

āϝāĻĻি āφāϏāϞ=P, āϏāĻŽāϝ়=T, āϏুāĻĻেāϰ āĻšাāϰ=R, āϏুāĻĻ-āφāϏāϞ=A āĻšāϝ়, āϤাāĻšāϞে;

• āϏুāĻĻেāϰ āĻĒāϰিāĻŽাāĻŖ= PRT/100

• āφāϏāϞ= 100×āϏুāĻĻ-āφāϏāϞ(A)/100+TR

 

• āύৌāĻ•াāϰ āĻ—āϤি āϏ্āϰোāϤেāϰ āĻ…āύুāĻ•ূāϞে āϘāύ্āϟাāϝ় 10 āĻ•ি.āĻŽি. āĻāĻŦং āϏ্āϰোāϤেāϰ āĻĒ্āϰāϤিāĻ•ূāϞে 2 āĻ•ি.āĻŽি.। āϏ্āϰোāϤেāϰ āĻŦেāĻ— āĻ•āϤ?

āϟেāĻ•āύিāĻ•ঃ āϏ্āϰোāϤেāϰ āĻŦেāĻ— = (āϏ্āϰোāϤেāϰ āĻ…āύুāĻ•ূāϞে āύৌāĻ•াāϰ āĻŦেāĻ— – āϏ্āϰোāϤেāϰ āĻĒ্āϰāϤিāĻ•ূāϞে āύৌāĻ•াāϰ āĻŦেāĻ—) /2 = (10 – 2)/2= = 4 āĻ•ি.āĻŽি.

• āĻāĻ•āϟি āύৌāĻ•া āϏ্āϰোāϤেāϰ āĻ…āύুāĻ•ূāϞে āϘāύ্āϟাāϝ় 8 āĻ•ি.āĻŽি.āĻāĻŦং āϏ্āϰোāϤেāϰ āĻĒ্āϰāϤিāĻ•ূāϞে āϘāύ্āϟাāϝ় 4 āĻ•ি.āĻŽি.āϝাāϝ়। āύৌāĻ•াāϰ āĻŦেāĻ— āĻ•āϤ?

āϟেāĻ•āύিāĻ•ঃ āύৌāĻ•াāϰ āĻŦেāĻ— = (āϏ্āϰোāϤেāϰ āĻ…āύুāĻ•ূāϞে āύৌāĻ•াāϰ āĻŦেāĻ—+āϏ্āϰোāϤেāϰ āĻĒ্āϰāϤিāĻ•ূāϞে āύৌāĻ•াāϰ āĻŦেāĻ—)/2= (8 + 4)/2=6 āĻ•ি.āĻŽি.

• āύৌāĻ•া āĻ“ āϏ্āϰোāϤেāϰ āĻŦেāĻ— āϘāύ্āϟাāϝ় āϝāĻĨাāĻ•্āϰāĻŽে 10 āĻ•ি.āĻŽি. āĻ“ 5 āĻ•ি.āĻŽি.। āύāĻĻীāĻĒāĻĨে 45 āĻ•ি.āĻŽি. āĻĒāĻĨ āĻāĻ•āĻŦাāϰ āĻ—িāϝ়ে āĻĢিāϰে āφāϏāϤে āĻ•āϤ āϏāĻŽāϝ় āϞাāĻ—āĻŦে?

āϟেāĻ•āύিāĻ•ঃ āĻŽােāϟ āϏāĻŽāϝ় = [(āĻŽােāϟ āĻĻূāϰāϤ্āĻŦ/ āĻ…āύুāĻ•ূāϞে āĻŦেāĻ—) + (āĻŽােāϟ āĻĻূāϰāϤ্āĻŦ/āĻĒ্āϰāϤিāĻ•ূāϞে āĻŦেāĻ—)]

āωāϤ্āϤāϰ:āϏ্āϰোāϤেāϰ āĻ…āύুāĻ•ূāϞে āύৌāĻ•াāϰāĻŦেāĻ— = (10+5) = 15 āĻ•ি.āĻŽি.

āϏ্āϰোāϤেāϰ āĻĒ্āϰāϤিāĻ•ূāϞে āύৌāĻ•াāϰ āĻŦেāĻ— = (10-5) = 5āĻ•ি.āĻŽি.

[(45/15) +(45/5)]

= 3+9

=12 āϘāύ্āϟা

āϏāĻŽাāύ্āϤāϰ āϧাāϰাāϰ āĻ•্āϰāĻŽিāĻ• āϏংāĻ–্āϝাāϰ āϝোāĻ—āĻĢāϞ

(āϝāĻ–āύ āϏংāĻ–্āϝাāϟি1 āĻĨেāĻ•ে āĻļুāϰু)1+2+3+4+……+n āĻšāϞে āĻāϰূāĻĒ āϧাāϰাāϰ āϏāĻŽāώ্āϟি= [n(n+1)/2]

n=āĻļেāώ āϏংāĻ–্āϝা āĻŦা āĻĒāĻĻ āϏংāĻ–্āϝা s=āϝোāĻ—āĻĢāϞ

Advertisements

āĻĒ্āϰāĻļ্āύঃ 1+2+3+….+100 =?

āϏāĻŽাāϧাāύঃ[n(n+1)/2]

= [100(100+1)/2]

= 5050

• āϏāĻŽাāύ্āϤāϰ āϧাāϰাāϰ āĻŦāϰ্āĻ— āϝোāĻ— āĻĒāĻĻ্āϧāϤিāϰ āĻ•্āώেāϤ্āϰে,-

āĻĒ্āϰāĻĨāĻŽ n āĻĒāĻĻেāϰ āĻŦāϰ্āĻ—েāϰ āϏāĻŽāώ্āϟি

S= [n(n+1)2n+1)/6]

(āϝāĻ–āύ 1² + 2²+ 3² + 4²…….. +n²)

āĻĒ্āϰāĻļ্āύঃ(1² + 3²+ 5² + ……. +31²) āϏāĻŽাāύ āĻ•āϤ?

āϏāĻŽাāϧাāύঃ S=[n(n+1)2n+1)/6]

= [31(31+1)2×31+1)/6]

=31

• āϏāĻŽাāύ্āϤāϰ āϧাāϰাāϰ āϘāύāϝোāĻ— āĻĒāĻĻ্āϧāϤিāϰ āĻ•্āώেāϤ্āϰে-

āĻĒ্āϰāĻĨāĻŽ n āĻĒāĻĻেāϰ āϘāύেāϰ āϏāĻŽāώ্āϟি S= [n(n+1)/2]2

(āϝāĻ–āύ 1³+2³+3³+………….+n³)

āĻĒ্āϰāĻļ্āύঃ1³+2³+3³+4³+…………+10³=?

āϏāĻŽাāϧাāύঃ [n(n+1)/2]2

= [10(10+1)/2]2

= 3025

• āĻĒāĻĻ āϏংāĻ–্āϝা āĻ“ āĻĒāĻĻ āϏংāĻ–্āϝাāϰ āϏāĻŽāώ্āϟি āύিāϰ্āύāϝ়েāϰ āĻ•্āώেāϤ্āϰেঃ

āĻĒāĻĻ āϏংāĻ–্āϝা N= [(āĻļেāώ āĻĒāĻĻ – āĻĒ্āϰāĻĨāĻŽ āĻĒāĻĻ)/āĻĒ্āϰāϤি āĻĒāĻĻে āĻŦৃāĻĻ্āϧি] +1

āĻĒ্āϰāĻļ্āύঃ5+10+15+…………+50=?

āϏāĻŽাāϧাāύঃ āĻĒāĻĻāϏংāĻ–্āϝা = [(āĻļেāώ āĻĒāĻĻ – āĻĒ্āϰāĻĨāĻŽāĻĒāĻĻ)/āĻĒ্āϰāϤি āĻĒāĻĻে āĻŦৃāĻĻ্āϧি]+1

= [(50 – 5)/5] + 1

=10

āϏুāϤāϰাং āĻĒāĻĻ āϏংāĻ–্āϝাāϰ āϏāĻŽāώ্āϟি

= [(5 + 50)/2] ×10

= 275

• n āϤāĻŽ āĻĒāĻĻ=a + (n-1)d

āĻāĻ–াāύে, n =āĻĒāĻĻāϏংāĻ–্āϝা, a = 1āĻŽ āĻĒāĻĻ, d= āϏাāϧাāϰāĻŖ āĻ…āύ্āϤāϰ

āĻĒ্āϰāĻļ্āύঃ 5+8+11+14+…….āϧাāϰাāϟিāϰ āĻ•োāύ āĻĒāĻĻ 302?

āϏāĻŽাāϧাāύঃ āϧāϰি, n āϤāĻŽ āĻĒāĻĻ =302

āĻŦা, a + (n-1)d=302

āĻŦা, 5+(n-1)3 =302

āĻŦা, 3n=300

āĻŦা, n=100

• āϏāĻŽাāύ্āϤāϰ āϧাāϰাāϰ āĻ•্āϰāĻŽিāĻ• āĻŦিāϜোāĻĄ় āϏংāĻ–্āϝাāϰ āϝোāĻ—āĻĢāϞ-S=M² āĻāĻ–াāύে,M=āĻŽāϧ্āϝেāĻŽা=(1āĻŽ āϏংāĻ–্āϝা+āĻļেāώ āϏংāĻ–্āϝা)/2

āĻĒ্āϰāĻļ্āύঃ1+3+5+…….+19=āĻ•āϤ?

āϏāĻŽাāϧাāύঃ S=M²

={(1+19)/2}²

=(20/2)²

=100

āĻŦāϰ্āĻ—

• ²=1,(11)²=121,(111)²=12321,(1111)²=1234321,(11111)²=123454321

āύিāϝ়āĻŽ-āϝāϤāĻ—ুāϞো 1 āĻĒাāĻļাāĻĒাāĻļি āύিāϝ়ে āĻŦāϰ্āĻ— āĻ•āϰা āĻšāĻŦে, āĻŦāϰ্āĻ— āĻĢāϞে 1 āĻĨেāĻ•ে āĻļুāϰু āĻ•āϰে āĻĒāϰ āĻĒāϰ āϏেāχ āϏংāĻ–্āϝা āĻĒāϰ্āϝāύ্āϤ āϞিāĻ–āϤে āĻšāĻŦে āĻāĻŦং āϤাāϰāĻĒāϰ āϏেāχ āϏংāĻ–্āϝাāϰ āĻĒāϰ āĻĨেāĻ•ে āĻ…āϧঃāĻ•্āϰāĻŽে āĻĒāϰāĻĒāϰ āϏংāĻ–্āϝাāĻ—ুāϞো āϞিāĻ–ে 1 āϏংāĻ–্āϝাāϝ় āĻļেāώ āĻ•āϰāϤে āĻšāĻŦে।

• (3)²=9,(33)²=1089,(333)²=110889,(3333)²=11108889,(33333)²=1111088889

āϝāϤāĻ—ুāϞি 3 āĻĒাāĻļাāĻĒাāĻļি āύিāϝ়ে āĻŦāϰ্āĻ— āĻ•āϰা āĻšāĻŦে, āĻŦāϰ্āĻ— āĻĢāϞে āĻāĻ•āĻ•েāϰ āϘāϰে 9 āĻāĻŦং 9 āĻāϰ āĻŦাঁāĻĻিāĻ•ে āϤাāϰ āϚেāϝ়ে (āϝāϤāĻ—ুāϞো 3 āĻĨাāĻ•āĻŦে) āĻāĻ•āϟি āĻ•āĻŽ āϏংāĻ–্āϝāĻ• 8, āϤাāϰ āĻĒāϰ āĻŦাঁāĻĻিāĻ•ে āĻāĻ•āϟি 0 āĻāĻŦং āĻŦাঁāĻĻিāĻ•ে 8 āĻāϰ āϏāĻŽāϏংāĻ–্āϝāĻ• 1 āĻŦāϏāĻŦে।

• (6)²=36,(66)²=4356,(666)²=443556,(6666)²=44435556,(66666)²=4444355556

āϝāϤāĻ—ুāϞি 6 āĻĒাāĻļাāĻĒাāĻļি āύিāϝ়ে āĻŦāϰ্āĻ— āĻ•āϰা āĻšāĻŦে, āĻŦāϰ্āĻ— āĻĢāϞে āĻāĻ•āĻ•েāϰ āϘāϰে 6 āĻāĻŦং 6 āĻāϰ āĻŦাঁāĻĻিāĻ•ে āϤাāϰ āϚেāϝ়ে (āϝāϤāĻ—ুāϞো 6 āĻĨাāĻ•āĻŦে) āĻāĻ•āϟি āĻ•āĻŽ āϏংāĻ–্āϝāĻ• 5, āϤাāϰ āĻĒāϰ āĻŦাঁāĻĻিāĻ•ে āĻāĻ•āϟি 3 āĻāĻŦং āĻŦাঁāĻĻিāĻ•ে 5 āĻāϰ āϏāĻŽāϏংāĻ–্āϝāĻ• 4 āĻŦāϏāĻŦে।

• (9)²=81,(99)²=9801,(999)²=998001,(9999)²=99980001,(99999)²=9999800001

āϝāϤāĻ—ুāϞি 9 āĻĒাāĻļাāĻĒাāĻļি āύিāϝ়ে āĻŦāϰ্āĻ— āĻ•āϰা āĻšāĻŦে, āĻŦāϰ্āĻ— āĻĢāϞে āĻāĻ•āĻ•েāϰ āϘāϰে 1 āĻāĻŦং 1 āĻāϰ āĻŦাঁāĻĻিāĻ•ে āϤাāϰ āϚেāϝ়ে (āϝāϤāĻ—ুāϞো 9 āĻĨাāĻ•āĻŦে) āĻāĻ•āϟি āĻ•āĻŽ āϏংāĻ–্āϝāĻ• 0, āϤাāϰ āĻĒāϰ āĻŦাঁāĻĻিāĻ•ে āĻāĻ•āϟি 8 āĻāĻŦং āĻŦাঁāĻĻিāĻ•ে 0 āĻāϰ āϏāĻŽāϏংāĻ–্āϝāĻ• 9 āĻŦāϏāĻŦে।

āϜāύāĻ•≠Father

• Numerology (āϏংāĻ–্āϝাāϤāϤ্āϤ্āĻŦ)- Pythagoras(āĻĒিāĻĨাāĻ—োāϰাāϏ)

• Geometry(āϜ্āϝাāĻŽিāϤি)- Euclid(āχāωāĻ•্āϞিāĻĄ)

• Calculus(āĻ•্āϝাāϞāĻ•ুāϞাāϏ)- Newton(āύিāωāϟāύ)

• Matrix(āĻŽ্āϝাāϟ্āϰিāĻ•্āϏ) – Arthur Cayley(āĻ…āϰ্āĻĨাāϰ āĻ•্āϝাāϞে)

• Trigonometry(āϤ্āϰিāĻ•োāĻŖāĻŽিāϤি)Hipparchus(āĻšিāĻĒ্āĻĒাāϰāϚাāϏ)

• Arithmetic(āĻĒাāϟিāĻ—āĻŖিāϤ) Brahmagupta(āĻŦ্āϰāĻš্āĻŽāĻ—ুāĻĒ্āϤ)

• Algebra(āĻŦীāϜāĻ—āĻŖিāϤ)- Muhammad ibn Musa al-Khwarizmi(āĻŽােāĻšাāĻŽ্āĻŽāĻĻ āĻŽুāϏা āφāϞ āĻ–াāϰিāϜāĻŽী)

• Logarithm(āϞāĻ—াāϰিāĻĻāĻŽ)- John Napier(āϜāύ āύেāĻĒিāϝ়াāϰ)

• Set theory(āϏেāϟ āϤāϤ্āϤ্āĻŦ)- George Cantor(āϜāϰ্āϜ āĻ•্āϝাāύ্āϟāϰ)

• Zero(āĻļূāύ্āϝ)- Brahmagupta(āĻŦ্āϰāĻš্āĻŽāĻ—ুāĻĒ্āϤ)

āĻ…āĻ™্āĻ•েāϰ āχংāϰেāϜি āĻļāĻŦ্āĻĻ-āĻĒাāϟিāĻ—āĻŖিāϤ āĻ“ āĻĒāϰিāĻŽিāϤি

āĻ…āĻ™্āĻ•-Digit, āĻ…āύুāĻĒাāϤ-Ratio, āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা—Prime number, āĻĒূāϰ্āĻŖāĻŦāϰ্āĻ—-Perfect square,āĻ‰ā§ŽāĻĒাāĻĻāĻ•-Factor,āĻ•্āϰāĻŽিāĻ• āϏāĻŽাāύুāĻĒাāϤী—Continued proportion, āĻ•্āϰāϝ়āĻŽূāϞ্āϝ -Cost price, āĻ•্āώāϤি-Loss, āĻ—āĻĄ়-Average, āĻ—āϤিāĻŦেāĻ—-Velocity, āĻ—ুāĻŖāĻĢāϞ-Product, āĻ—,āϏা,āĻ—ু-Highest Common Factor, āϘাāϤ-Power, āϘāύāĻŽূāϞ—Cube root, āϘāύāĻ•-Cube, āϘāύāĻĢāϞ-Volume, āĻĒূāϰ্āύāϏংāĻ–্āϝা-Integer, āϚাāĻĒ-Arc, āϚোāĻ™-Cylinder, āϜ্āϝা-Chord, āϜোāĻĄ় āϏংāĻ–্āϝা-Even number, āϧ্āϰুāĻŦāĻ•-Constant, āĻĒāϰিāϏীāĻŽা-Perimeter, āĻŦাāϏ্āϤāĻŦ-Real, āĻŦāϰ্āĻ—āĻŽূāϞ-Square root, āĻŦ্āϝāϏ্āϤ āĻ…āύুāĻĒাāϤ—Inverse ratio, āĻŦিāϜোāĻĄ়āϏংāĻ–্āϝা—Odd number, āĻŦিāĻ•্āϰāϝ়āĻŽূāϞ্āϝ -Selling price, āĻŦীāϜāĻ—āĻŖিāϤ—Algebra, āĻŽূāϞāĻĻ Rational, āĻŽāϧ্āϝ āϏāĻŽাāύুāĻĒাāϤী -Mean proportional, āϝােāĻ—āĻĢāϞ=Sum

āϞ,āϏা,āĻ—ু-Lowest Common Multiple, āϞāĻŦ-Numerator, āĻļāϤāĻ•āϰা-Percentage, āϏāĻŽাāύুāĻĒাāϤ-Proportion, āϏāĻŽাāύুāĻĒাāϤী-Proportional, āϏুāĻĻ-Interest, āĻšāϰ-Denominator,


āϜ্āϝাāĻŽিāϤি

āĻ…āϤিāĻ­ূāϜ—Hypotenuse, āĻ…āύ্āϤঃāĻ•োāĻŖ-Internal angle, āĻ…āϰ্āϧāĻŦৃāϤ্āϤ-Semi-circle, āĻ…āύ্āϤ āĻŦ্āϝাāϏাāϰ্āϧ-In-radius, āφāϝ়āϤāĻ•্āώেāϤ্āϰ-Rectangle, āωāϚ্āϚāϤা-Height, āĻ•āϰ্āĻŖ–Diagonal, āĻ•োāĻŖ-Angle, āĻ•েāύ্āĻĻ্āϰ-Centre, āĻ—ােāϞāĻ•-Sphere, āϚāϤুāϰ্āĻ­ুāϜ-Quadrilateral, āϚোāĻ™-Cylinder,āϜ্āϝাāĻŽিāϤি-Geometry,āĻĻৈāϰ্āϘ্āϝ-Length, āĻĒāĻž্āϚāĻ­ূāϜ -Pentagon, āĻĒ্āϰāϏ্āĻĨ-Breadth,āĻĒূāϰāĻ•āĻ•োāύ-Complementary angles, āĻŦাāĻšু-Side, āĻŦৃāϤ্āϤ-Circle, āĻŦ্āϝাāϏাāϰ্āϧ-Radius, āĻŦ্āϝাāϏ-Diameter, āĻŦāĻšুāĻ­ূāϜ-Polygon, āĻŦāϰ্āĻ—āĻ•্āώেāϤ্āϰ—Square, āĻŦāĻšি:āϏ্āĻĨ External, āĻļāĻ™্āĻ•ু-Cone, āϏāĻŽāĻ•োāĻŖ-Right angle, āϏāĻŽāĻŦাāĻšু āϤ্āϰিāĻ­ূāϜ-Equilateral triangle, āĻ…āϏāĻŽāĻŦাāĻšু āϤ্āϰিāĻ­ূāϜ—Scalene triangle, āϏāĻŽāĻĻ্āĻŦিāĻŦাāĻšু āϤ্āϰিāĻ­ূāϜ-isosceles Triangle,āϏāĻŽāĻ•োāĻŖী āϤ্āϰিāĻ­ুāϜ Right angled triangle, āϏূāĻ•্āώ্āĻŽāĻ•োāĻŖী-Acute angled triangle, āϏ্āĻĨূāϞāĻ•োāĻŖী āϤ্āϰিāĻ­ুāϜ Obtuse angled triangle, āϏāĻŽাāύ্āϤāϰাāϞ—Parallel, āϏāϰāϞāϰেāĻ–া—Straight line, āϏāĻŽ্āĻĒূāϰāĻ• āĻ•োāĻŖ—Supplementary angles, āϏāĻĻৃāĻļāĻ•োāĻŖী-Equiangular

āϰোāĻŽাāύ āϏংāĻ–্āϝা≠ Roman Numerals

1:I,2: II,3: III,4: IV,5: V,6: VI,7: VII,8: VIII,9: IX,10: X,11: XI,12: XII,13: XIII,14: XIV,15: XV,16: XVI,17: XVII,18: XVIII,19: XIX,20: XX,30: XXX,40: XL,50: L,60: LX,70: LXX,80: LXXX,90: XC,100: C,200: CC,300: CCC,400: CD,500: D,600: DC, 700:DCC,800: DCCC,900: CM,1000:M

āφāϰāĻ“ āĻ•িāĻ›ু āϟেāĻ•āύিāĻ•

• āϜোāĻĄ় āϏংāĻ–্āϝা + āϜোāĻĄ় āϏংāĻ–্āϝা = āϜোāĻĄ়

āϏংāĻ–্āϝা।

āϝেāĻŽāύঃ 2 + 6 = 8.

• āϜোāĻĄ় āϏংāĻ–্āϝা + āĻŦিāϜোāĻĄ় āϏংāĻ–্āϝা =

āĻŦিāϜোāĻĄ় āϏংāĻ–্āϝা।

āϝেāĻŽāύঃ 6 + 7 = 13.

• āĻŦিāϜোāĻĄ় āϏংāĻ–্āϝা + āĻŦিāϜোāĻĄ় āϏংāĻ–্āϝা =

āϜোāĻĄ় āϏংāĻ–্āϝা।

āϝেāĻŽāύঃ 3 + 5 = 8.

• āϜোāĻĄ় āϏংāĻ–্āϝা × āϜোāĻĄ় āϏংāĻ–্āϝা = āϜোāĻĄ়

āϏংāĻ–্āϝা।

āϝেāĻŽāύঃ 6 × 8 = 48.

• āϜোāĻĄ় āϏংāĻ–্āϝা × āĻŦিāϜোāĻĄ় āϏংāĻ–্āϝা = āϜোāĻĄ়

āϏংāĻ–্āϝা।

āϝেāĻŽāύঃ 6 × 7 = 42

• āĻŦিāϜোāĻĄ় āϏংāĻ–্āϝা × āĻŦিāϜোāĻĄ় āϏংāĻ–্āϝা =

āĻŦিāϜোāĻĄ় āϏংāĻ–্āϝা।

āϝেāĻŽāύঃ 3 × 9 = 27

Comments

Popular posts from this blog

HSC English First Paper | Unit: 1, Lesson: 1 | People or Institutions Making History | Nelson Mandela, from Apartheid Fighter to President

Comprehension

Report writing