Math formula
āĻāĻŖিāϤ āĻāϰ āϏāĻāϞ āϏূāϤ্āϰ
āĻŦীāĻāĻাāĻŖিāϤিāĻ āϏূāϤ্āϰাāĻŦāϞী
• (a+b)²= a²+2ab+b²
• (a+b)²= (a-b)²+4ab
• (a-b)²= a²-2ab+b²
• (a-b)²= (a+b)²-4ab
• a² + b²= (a+b)²-2ab
• a² + b²= (a-b)²+2ab
• a²-b²= (a +b)(a -b)
• 2(a²+b²)= (a+b)²+(a-b)²
• 4ab = (a+b)²-(a-b)²
• ab = {(a+b)/2}²-{(a-b)/2}²
• (a+b+c)² = a²+b²+c²+2(ab+bc+ca)
• (a+b)³ = a³+3a²b+3ab²+b³
• (a+b)³ = a³+b³+3ab(a+b)
• a-b)³= a³-3a²b+3ab²-b³
• (a-b)³= a³-b³-3ab(a-b)
• a³+b³= (a+b) (a²-ab+b²)
• a³+b³= (a+b)³-3ab(a+b)
• a³-b³ = (a-b) (a²+ab+b²)
• a³-b³ = (a-b)³+3ab(a-b)
• (a² + b² + c²) = (a + b + c)² – 2(ab + bc + ca)
• 2 (ab + bc + ca) = (a + b + c)² – (a² + b² + c²)
• (a + b + c)³ = a³ + b³ + c³ + 3 (a + b) (b + c) (c + a)
• a³ + b³ + c³ – 3abc =(a+b+c)(a² + b²+ c²–ab–bc– ca)
• a3 + b3 + c3 – 3abc =½ (a+b+c) { (a–b)²+(b–c)²+(c–a)²}
• (x + a) (x + b) = x² + (a + b) x + ab
• (x + a) (x – b) = x² + (a – b) x – ab
• (x – a) (x + b) = x² + (b – a) x – ab
• (x – a) (x – b) = x² – (a + b) x + ab
• (x+p) (x+q) (x+r) = x³ + (p+q+r) x² + (pq+qr+rp) x +pqr
• bc (b-c) + ca (c- a) + ab (a – b) = – (b – c) (c- a) (a – b)
• a² (b- c) + b² (c- a) + c² (a – b) = -(b-c) (c-a) (a – b)
• a (b² – c²) + b (c² – a²) + c (a² – b²) = (b – c) (c- a) (a – b)
• a³ (b – c) + b³ (c-a) +c³ (a -b) =- (b-c) (c-a) (a – b)(a + b + c)
• b²-c² (b²-c²) + c²a²(c²-a²)+a²b²(a²-b²)=-(b-c) (c-a) (a-b) (b+c) (c+a) (a+b)
• (ab + bc+ca) (a+b+c) – abc = (a + b)(b + c) (c+a)
• (b + c)(c + a)(a + b) + abc = (a + b +c) (ab + bc + ca)
āĻāϝ়āϤāĻ্āώেāϤ্āϰ
• āĻāϝ়āϤāĻ্āώেāϤ্āϰেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ = (āĻĻৈāϰ্āĻ্āϝ × āĻĒ্āϰāϏ্āĻĨ) āĻŦāϰ্āĻ āĻāĻāĻ
• āĻāϝ়āϤāĻ্āώেāϤ্āϰেāϰ āĻĒāϰিāϏীāĻŽা = 2 (āĻĻৈāϰ্āĻ্āϝ+āĻĒ্āϰāϏ্āĻĨ)āĻāĻāĻ
• āĻāϝ়āϤāĻ্āώেāϤ্āϰেāϰ āĻāϰ্āĻŖ = √(āĻĻৈāϰ্āĻ্āϝ²+āĻĒ্āϰāϏ্āĻĨ²)āĻāĻāĻ
• āĻāϝ়āϤāĻ্āώেāϤ্āϰেāϰ āĻĻৈāϰ্āĻ্āϝ= āĻ্āώেāϤ্āϰāĻĢāϞ÷āĻĒ্āϰāϏ্āϤ āĻāĻāĻ
• āĻāϝ়āϤāĻ্āώেāϤ্āϰেāϰ āĻĒ্āϰāϏ্āϤ= āĻ্āώেāϤ্āϰāĻĢāϞ÷āĻĻৈāϰ্āĻ্āϝ āĻāĻāĻ
āĻŦāϰ্āĻāĻ্āώেāϤ্āϰ
• āĻŦāϰ্āĻāĻ্āώেāϤ্āϰেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ = (āϝে āĻোāύ āĻāĻāĻি āĻŦাāĻšুāϰ āĻĻৈāϰ্āĻ্āϝ)² āĻŦāϰ্āĻ āĻāĻāĻ
• āĻŦāϰ্āĻāĻ্āώেāϤ্āϰেāϰ āĻĒāϰিāϏীāĻŽা = 4 × āĻāĻ āĻŦাāĻšুāϰ āĻĻৈāϰ্āĻ্āϝ āĻāĻāĻ
• āĻŦāϰ্āĻāĻ্āώেāϤ্āϰেāϰ āĻāϰ্āĻŖ=√2 × āĻāĻ āĻŦাāĻšুāϰ āĻĻৈāϰ্āĻ্āϝ āĻāĻāĻ
• āĻŦāϰ্āĻāĻ্āώেāϤ্āϰেāϰ āĻŦাāĻšু=√āĻ্āώেāϤ্āϰāĻĢāϞ āĻŦা āĻĒāϰিāϏীāĻŽা÷4 āĻāĻāĻ
āϤ্āϰিāĻূāĻ
• āϏāĻŽāĻŦাāĻšু āϤ্āϰিāĻূāĻেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ = √¾×(āĻŦাāĻšু)²
• āϏāĻŽāĻŦাāĻšু āϤ্āϰিāĻূāĻেāϰ āĻāĻ্āĻāϤা = √3/2×(āĻŦাāĻšু)
• āĻŦিāώāĻŽāĻŦাāĻšু āϤ্āϰিāĻুāĻেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ = √s(s-a) (s-b) (s-c)
āĻāĻাāύে a, b, c āϤ্āϰিāĻুāĻেāϰ āϤিāύāĻি āĻŦাāĻšুāϰ āĻĻৈāϰ্āĻ্āϝ, s=āĻ āϰ্āϧāĻĒāϰিāϏীāĻŽা
• āĻĒāϰিāϏীāĻŽা 2s=(a+b+c)
• āϏাāϧাāϰāĻŖ āϤ্āϰিāĻূāĻেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ = ½
(āĻূāĻŽি×āĻāĻ্āĻāϤা) āĻŦāϰ্āĻ āĻāĻāĻ
• āϏāĻŽāĻোāĻŖী āϤ্āϰিāĻূāĻেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ = ½(a×b)
āĻāĻাāύে āϤ্āϰিāĻুāĻেāϰ āϏāĻŽāĻোāĻŖ āϏংāϞāĻ্āύ āĻŦাāĻšুāĻĻ্āĻŦāϝ় a āĻāĻŦং b.
• āϏāĻŽāĻĻ্āĻŦিāĻŦাāĻšু āϤ্āϰিāĻূāĻেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ = 2√4b²-a²/4 āĻāĻাāύে, a= āĻূāĻŽি; b= āĻ āĻĒāϰ āĻŦাāĻšু।
• āϤ্āϰিāĻুāĻেāϰ āĻāĻ্āĻāϤা = 2(āĻ্āώেāϤ্āϰāĻĢāϞ/āĻূāĻŽি)
• āϏāĻŽāĻোāĻŖী āϤ্āϰিāĻুāĻেāϰ āĻ āϤিāĻুāĻ =√ āϞāĻŽ্āĻŦ²+āĻূāĻŽি²
• āϞāĻŽ্āĻŦ =√āĻ āϤিāĻূāϲ-āĻূāĻŽি²
• āĻূāĻŽি = √āĻ āϤিāĻূāϲ-āϞāĻŽ্āĻŦ²
• āϏāĻŽāĻĻ্āĻŦিāĻŦাāĻšু āϤ্āϰিāĻুāĻেāϰ āĻāĻ্āĻāϤা = √b² – a²/4
āĻāĻাāύে a= āĻূāĻŽি; b= āϏāĻŽাāύ āĻĻুāĻ āĻŦাāĻšুāϰ āĻĻৈāϰ্āĻ্āϝ।
• āϤ্āϰিāĻুāĻেāϰ āĻĒāϰিāϏীāĻŽা=āϤিāύ āĻŦাāĻšুāϰ āϏāĻŽāώ্āĻি
āϰāĻŽ্āĻŦāϏ
• āϰāĻŽ্āĻŦāϏেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ = ½× (āĻāϰ্āĻŖāĻĻুāĻāĻিāϰ āĻুāĻŖāĻĢāϞ)
• āϰāĻŽ্āĻŦāϏেāϰ āĻĒāϰিāϏীāĻŽা = 4× āĻāĻ āĻŦাāĻšুāϰ āĻĻৈāϰ্āĻ্āϝ
āϏাāĻŽাāύ্āϤāϰিāĻ
• āϏাāĻŽাāύ্āϤāϰিāĻেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ = āĻূāĻŽি × āĻāĻ্āĻāϤা =
• āϏাāĻŽাāύ্āϤāϰিāĻেāϰ āĻĒāϰিāϏীāĻŽা = 2×(āϏāύ্āύিāĻšিāϤ āĻŦাāĻšুāĻĻ্āĻŦāϝ়েāϰ āϏāĻŽāώ্āĻি)
āĻ্āϰাāĻĒিāĻিāϝ়াāĻŽ
• āĻ্āϰাāĻĒিāĻিāϝ়াāĻŽেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ =½×(āϏāĻŽাāύ্āϤāϰাāϞ āĻŦাāĻšু āĻĻুāĻāĻিāϰ āϝােāĻāĻĢāϞ)×āĻāĻ্āĻāϤা
āĻāύāĻ
• āĻāύāĻেāϰ āĻāύāĻĢāϞ = (āϝেāĻোāύ āĻŦাāĻšু)³ āĻāύ āĻāĻāĻ
• āĻāύāĻেāϰ āϏāĻŽāĻ্āϰāϤāϞেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ = 6× āĻŦাāĻšু² āĻŦāϰ্āĻ āĻāĻāĻ
• āĻāύāĻেāϰ āĻāϰ্āĻŖ = √3×āĻŦাāĻšু āĻāĻāĻ
āĻāϝ়āϤāĻāύāĻ
• āĻāϝ়āϤāĻāύāĻেāϰ āĻāύāĻĢāϞ = (āĻĻৈā§°্āĻা×āĻĒ্āϰāϏ্āϤ×āĻāĻ্āĻāϤা) āĻāύ āĻāĻāĻ
• āĻāϝ়āϤāĻāύāĻেāϰ āϏāĻŽāĻ্āϰāϤāϞেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ = 2(ab + bc + ca) āĻŦāϰ্āĻ āĻāĻāĻ
[ āϝেāĻাāύে a = āĻĻৈāϰ্āĻ্āϝ b = āĻĒ্āϰāϏ্āϤ c = āĻāĻ্āĻāϤা ]
• āĻāϝ়āϤāĻāύāĻেāϰ āĻāϰ্āĻŖ = √a²+b²+c² āĻāĻāĻ
• āĻাāϰি āĻĻেāĻāϝ়াāϞেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ = 2(āĻĻৈāϰ্āĻ্āϝ + āĻĒ্āϰāϏ্āĻĨ)×āĻāĻ্āĻāϤা
āĻŦৃāϤ্āϤ
• āĻŦৃāϤ্āϤেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ = Īr²=22/7r² {āĻāĻাāύে Ī=āϧ্āϰুāĻŦāĻ 22/7, āĻŦৃāϤ্āϤেāϰ āĻŦ্āϝাāϏাāϰ্āϧ= r}
• āĻŦৃāϤ্āϤেāϰ āĻĒāϰিāϧি = 2Īr
• āĻোāϞāĻেāϰ āĻĒৃāώ্āĻ āϤāϞেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ = 4Īr² āĻŦāϰ্āĻ āĻāĻāĻ
• āĻোāϞāĻেāϰ āĻāϝ়āϤāύ = 4Īr³÷3 āĻāύ āĻāĻāĻ
• h āĻāĻ্āĻāϤাāϝ় āϤāϞāĻ্āĻেāĻĻে āĻā§āĻĒāύ্āύ āĻŦৃāϤ্āϤেāϰ āĻŦ্āϝাāϏাāϰ্āϧ = √r²-h² āĻāĻāĻ
• āĻŦৃāϤ্āϤāĻাāĻĒেāϰ āĻĻৈāϰ্āĻ্āϝ s=Īrθ/180° ,
āĻāĻাāύে θ =āĻোāĻŖ
āϏāĻŽāĻŦৃāϤ্āϤāĻূāĻŽিāĻ āϏিāϞিāύ্āĻĄাāϰ / āĻŦেāϞāύ
āϏāĻŽāĻŦৃāϤ্āϤāĻূāĻŽিāĻ āϏিāϞিāύ্āĻĄাāϰেāϰ āĻূāĻŽিāϰ āĻŦ্āϝাāϏাāϰ্āϧ r āĻāĻŦং āĻāĻ্āĻāϤা h āĻāϰ āĻšেāϞাāύো āϤāϞেāϰ āĻāĻ্āĻāϤা l āĻšāϞে,
• āϏিāϞিāύ্āĻĄাāϰেāϰ āĻāϝ়āϤāύ = Īr²h
• āϏিāϞিāύ্āĻĄাāϰেāϰ āĻŦāĻ্āϰāϤāϞেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ (āϏিāĻāϏāĻ) = 2Īrh।
• āϏিāϞিāύ্āĻĄাāϰেāϰ āĻĒৃāώ্āĻ āϤāϞেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ (āĻিāĻāϏāĻ) = 2Īr (h + r)
āϏāĻŽāĻŦৃāϤ্āϤāĻূāĻŽিāĻ āĻোāĻŖāĻ
āϏāĻŽāĻŦৃāϤ্āϤāĻূāĻŽিāĻ āĻূāĻŽিāϰ āĻŦ্āϝাāϏাāϰ্āϧ r āĻāĻŦং āĻāĻ্āĻāϤা h āĻāϰ āĻšেāϞাāύো āϤāϞেāϰ āĻāĻ্āĻāϤা l āĻšāϞে,
• āĻোāĻŖāĻেāϰ āĻŦāĻ্āϰāϤāϞেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ= Īrl āĻŦāϰ্āĻ āĻāĻāĻ
• āĻোāĻŖāĻেāϰ āϏāĻŽāϤāϞেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ= Īr(r+l) āĻŦāϰ্āĻ āĻāĻāĻ
• āĻোāĻŖāĻেāϰ āĻāϝ়āϤāύ= ⅓Īr²h āĻāύ āĻāĻāĻ
āĻāϰāĻ āĻিāĻু,
• āĻŦāĻšুāĻুāĻেāϰ āĻāϰ্āĻŖেāϰ āϏংāĻ্āϝা= n(n-3)/2
• āĻŦāĻšুāĻুāĻেāϰ āĻোāĻŖāĻুāϞিāϰ āϏāĻŽāώ্āĻি=(2n-4)āϏāĻŽāĻোāĻŖ,āĻāĻাāύে n=āĻŦাāĻšুāϰ āϏংāĻ্āϝা
• āĻāϤুāϰ্āĻুāĻেāϰ āĻĒāϰিāϏীāĻŽা=āĻাāϰ āĻŦাāĻšুāϰ āϏāĻŽāώ্āĻি
āϤ্āϰিāĻোāĻŖāĻŽিāϤিāϰ āϏূāϤ্āϰাāĻŦāϞী
• sinθ=⤞āĻŽ্āĻŦ/āĻ āϤিāĻূāĻ
• cosθ=āĻূāĻŽি/āĻ āϤিāĻূāĻ
• taneθ=⤞āĻŽ্āĻŦ/āĻূāĻŽি
• cotθ=āĻূāĻŽি/āϞāĻŽ্āĻŦ
• secθ=āĻ āϤিāĻূāĻ/āĻূāĻŽি
• cosecθ=āĻ āϤিāĻূāĻ/āϞāĻŽ্āĻŦ
• sinθ=1/cosecθ, cosecθ=1/sinθ
• cosθ=1/secθ, secθ=1/cosθ
• tanθ=1/cotθ, cotθ=1/tanθ
• sin²Î¸ + cos²Î¸= 1
• sin²Î¸ = 1 – cos²Î¸
• cos²Î¸ = 1- sin²Î¸
• sec²Î¸ – tan²Î¸ = 1
• sec²Î¸ = 1+ tan²Î¸
• tan²Î¸ = sec²Î¸ – 1
• cosec²Î¸ – cot²Î¸ = 1
• cosec²Î¸ = cot²Î¸ + 1
• cot²Î¸ = cosec²Î¸ – 1
āĻŦিāϝ়ােāĻেāϰ āϏূāϤ্āϰাāĻŦāϞি
• āĻŦিāϝ়ােāĻāύ-āĻŦিāϝ়োāĻ্āϝ =āĻŦিāϝ়োāĻāĻĢāϞ।
• āĻŦিāϝ়ােāĻāύ=āĻŦিāϝ়ােāĻāĻĢ + āĻŦিāϝ়ােāĻ্āϝ
• āĻŦিāϝ়ােāĻ্āϝ=āĻŦিāϝ়ােāĻāύ-āĻŦিāϝ়ােāĻāĻĢāϞ
āĻুāĻŖেāϰ āϏূāϤ্āϰাāĻŦāϞি
• āĻুāĻŖāĻĢāϞ =āĻুāĻŖ্āϝ × āĻুāĻŖāĻ
• āĻুāĻŖāĻ = āĻুāĻŖāĻĢāϞ ÷ āĻুāĻŖ্āϝ
• āĻুāĻŖ্āϝ= āĻুāĻŖāĻĢāϞ ÷ āĻুāĻŖāĻ
āĻাāĻেāϰ āϏূāϤ্āϰাāĻŦāϞি
āύিঃāĻļেāώে āĻŦিāĻাāĻ্āϝ āύা āĻšāϞে;
• āĻাāĻ্āϝ= āĻাāĻāĻ × āĻাāĻāĻĢāϞ + āĻাāĻāĻļেāώ।
• āĻাāĻ্āϝ= (āĻাāĻ্āϝ— āĻাāĻāĻļেāώ) ÷ āĻাāĻāĻĢāϞ।
• āĻাāĻāĻĢāϞ = (āĻাāĻ্āϝ — āĻাāĻāĻļেāώ)÷ āĻাāĻāĻ।
āύিঃāĻļেāώে āĻŦিāĻাāĻ্āϝ āĻšāϞে;
• āĻাāĻāĻ= āĻাāĻ্āϝ÷ āĻাāĻāĻĢāϞ।
• āĻাāĻāĻĢāϞ = āĻাāĻ্āϝ ÷ āĻাāĻāĻ।
• āĻাāĻ্āϝ = āĻাāĻāĻ × āĻাāĻāĻĢāϞ।
āĻāĻ্āύাংāĻļেāϰ āϞ.āϏা.āĻু āĻ āĻ.āϏা.āĻু āϏূāϤ্āϰাāĻŦāϞী
• āĻāĻ্āύাংāĻļেāϰ āĻ.āϏা.āĻু = āϞāĻŦāĻুāϞােāϰ āĻ.āϏা.āĻু / āĻšāϰāĻুāϞােāϰ āϞ.āϏা.āĻু
• āĻāĻ্āύাংāĻļেāϰ āϞ.āϏা.āĻু =āϞāĻŦāĻুāϞােāϰ āϞ.āϏা.āĻু /āĻšāϰāĻুāϞাāϰ āĻ.āϏা.āĻু
• āĻāĻ্āύাংāĻļāĻĻ্āĻŦāϝ়েāϰ āĻুāĻŖāĻĢāϞ = āĻāĻ্āύাংāĻļāĻĻ্āĻŦāϝ়েāϰ āϞ.āϏা.āĻু × āĻāĻ্āύাংāĻļāĻĻ্āĻŦāϝ়েāϰ āĻ.āϏা.āĻু.
āĻāĻĄ় āύিāϰ্āĻŖāϝ়
• āĻāĻĄ় = āϰাāĻļি āϏāĻŽāώ্āĻি /āϰাāĻļি āϏংāĻ্āϝা
• āϰাāĻļিāϰ āϏāĻŽāώ্āĻি = āĻāĻĄ় ×āϰাāĻļিāϰ āϏংāĻ্āϝা
• āϰাāĻļিāϰ āϏংāĻ্āϝা = āϰাāĻļিāϰ āϏāĻŽāώ্āĻি ÷ āĻāĻĄ়
• āĻāϝ়েāϰ āĻāĻĄ় = āĻŽােāĻ āĻāϝ়েāϰ āĻĒāϰিāĻŽাāĻŖ / āĻŽােāĻ āϞােāĻেāϰ āϏংāĻ্āϝা
• āϏংāĻ্āϝাāϰ āĻāĻĄ় = āϏংāĻ্āϝাāĻুāϞােāϰ āϝােāĻāĻĢāϞ /āϏংāĻ্āϝাāϰ āĻĒāϰিāĻŽাāύ āĻŦা āϏংāĻ্āϝা
• āĻ্āϰāĻŽিāĻ āϧাāϰাāϰ āĻāĻĄ় =āĻļেāώ āĻĒāĻĻ +ā§§āĻŽ āĻĒāĻĻ /2
āϏুāĻĻāĻāώাāϰ āĻĒāϰিāĻŽাāύ āύিāϰ্āύāϝ়েāϰ āϏূāϤ্āϰাāĻŦāϞী
• āϏুāĻĻ = (āϏুāĻĻেāϰ āĻšাāϰ×āĻāϏāϞ×āϏāĻŽāϝ়) ÷ā§§ā§Ļā§Ļ
• āϏāĻŽāϝ় = (100× āϏুāĻĻ)÷ (āĻāϏāϞ×āϏুāĻĻেāϰ āĻšাāϰ)
• āϏুāĻĻেāϰ āĻšাāϰ = (100×āϏুāĻĻ)÷(āĻāϏāϞ×āϏāĻŽāϝ়)
• āĻāϏāϞ = (100×āϏুāĻĻ)÷(āϏāĻŽāϝ়×āϏুāĻĻেāϰ āĻšাāϰ)
• āĻāϏāϞ = {100×(āϏুāĻĻ-āĻŽূāϞ)}÷(100+āϏুāĻĻেāϰ āĻšাāϰ×āϏāĻŽāϝ় )
• āϏুāĻĻাāϏāϞ = āĻāϏāϞ + āϏুāĻĻ
• āϏুāĻĻাāϏāϞ = āĻāϏāϞ ×(1+ āϏুāĻĻেāϰ āĻšাāϰ)× āϏāĻŽāϝ় |[āĻāĻ্āϰāĻŦৃāĻĻ্āϧি āϏুāĻĻেāϰ āĻ্āώেāϤ্āϰে]।
āϞাāĻ-āĻ্āώāϤিāϰ āĻāĻŦং āĻ্āϰāϝ়-āĻŦিāĻ্āϰāϝ়েāϰ āϏূāϤ্āϰাāĻŦāϞী
• āϞাāĻ = āĻŦিāĻ্āϰāϝ়āĻŽূāϞ্āϝ-āĻ্āϰāϝ়āĻŽূāϞ্āϝ
• āĻ্āώāϤি = āĻ্āϰāϝ়āĻŽূāϞ্āϝ-āĻŦিāĻ্āϰāϝ়āĻŽূāϞ্āϝ
• āĻ্āϰāϝ়āĻŽূāϞ্āϝ = āĻŦিāĻ্āϰāϝ়āĻŽূāϞ্āϝ-āϞাāĻ
āĻ āĻĨāĻŦা
āĻ্āϰāϝ়āĻŽূāϞ্āϝ = āĻŦিāĻ্āϰāϝ়āĻŽূāϞ্āϝ + āĻ্āώāϤি
• āĻŦিāĻ্āϰāϝ়āĻŽূāϞ্āϝ = āĻ্āϰāϝ়āĻŽূāϞ্āϝ + āϞাāĻ
āĻ āĻĨāĻŦা
āĻŦিāĻ্āϰāϝ়āĻŽূāϞ্āϝ = āĻ্āϰāϝ়āĻŽূāϞ্āϝ-āĻ্āώāϤি
1-100 āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ āϏংāĻ্āϝাāĻŽāύে āϰাāĻাāϰ āϏāĻšāĻ āĻāĻĒাāϝ়
āĻļāϰ্āĻāĻাāĻ :- 44 -22 -322-321
• 1āĻĨেāĻে100āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ āϏংāĻ্āϝা=25āĻি
• 1āĻĨেāĻে10āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ āϏংāĻ্āϝা=4āĻি 2,3,5,7
• 11āĻĨেāĻে20āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ āϏংāĻ্āϝা=4āĻি 11,13,17,19
• 21āĻĨেāĻে30āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ āϏংāĻ্āϝা=2āĻি 23,29
• 31āĻĨেāĻে40āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ āϏংāĻ্āϝা=2āĻি 31,37
• 41āĻĨেāĻে50āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ āϏংāĻ্āϝা=3āĻি 41,43,47
• 51āĻĨেāĻে 60āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ āϏংāĻ্āϝা=2āĻি 53,59
• 61āĻĨেāĻে70āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ āϏংāĻ্āϝা=2āĻি 61,67
• 71āĻĨেāĻে80 āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ āϏংāĻ্āϝা=3āĻি 71,73,79
• 81āĻĨেāĻে 90āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ āϏংāĻ্āϝা=2āĻি 83,89
• 91āĻĨেāĻে100āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ āϏংāĻ্āϝা=1āĻি 97
• 1-100 āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ āϏংāĻ্āϝা 25 āĻিঃ
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97
• 1-100āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ āϏংāĻ্āϝাāϰ āϝোāĻāĻĢāϞ
1060
āĻāϤিāĻŦেāĻ
• āĻোāύ āĻিāĻুāϰ āĻāϤিāĻŦেāĻ= āĻ āϤিāĻ্āϰাāύ্āϤ āĻĻূāϰāϤ্āĻŦ/āϏāĻŽāϝ়
• āĻ āϤিāĻ্āϰাāύ্āϤ āĻĻূāϰāϤ্āĻŦ = āĻāϤিāĻŦেāĻ×āϏāĻŽāϝ়
• āϏāĻŽāϝ়= āĻŽোāĻ āĻĻূāϰāϤ্āĻŦ/āĻŦেāĻ
• āϏ্āϰোāϤেāϰ āĻ āύুāĻূāϞে āύৌāĻাāϰ āĻাāϰ্āϝāĻāϰী āĻāϤিāĻŦেāĻ = āύৌāĻাāϰ āĻĒ্āϰāĻৃāϤ āĻāϤিāĻŦেāĻ + āϏ্āϰোāϤেāϰ āĻāϤিāĻŦেāĻ।
• āϏ্āϰোāϤেāϰ āĻĒ্āϰāϤিāĻূāϞে āύৌāĻাāϰ āĻাāϰ্āϝāĻāϰী āĻāϤিāĻŦেāĻ = āύৌāĻাāϰ āĻĒ্āϰāĻৃāϤ āĻāϤিāĻŦেāĻ – āϏ্āϰোāϤেāϰ āĻāϤিāĻŦেāĻ
āϏāϰāϞ āϏুāĻĻ
āϝāĻĻি āĻāϏāϞ=P, āϏāĻŽāϝ়=T, āϏুāĻĻেāϰ āĻšাāϰ=R, āϏুāĻĻ-āĻāϏāϞ=A āĻšāϝ়, āϤাāĻšāϞে;
• āϏুāĻĻেāϰ āĻĒāϰিāĻŽাāĻŖ= PRT/100
• āĻāϏāϞ= 100×āϏুāĻĻ-āĻāϏāϞ(A)/100+TR
• āύৌāĻাāϰ āĻāϤি āϏ্āϰোāϤেāϰ āĻ āύুāĻূāϞে āĻāύ্āĻাāϝ় 10 āĻি.āĻŽি. āĻāĻŦং āϏ্āϰোāϤেāϰ āĻĒ্āϰāϤিāĻূāϞে 2 āĻি.āĻŽি.। āϏ্āϰোāϤেāϰ āĻŦেāĻ āĻāϤ?
āĻেāĻāύিāĻঃ āϏ্āϰোāϤেāϰ āĻŦেāĻ = (āϏ্āϰোāϤেāϰ āĻ āύুāĻূāϞে āύৌāĻাāϰ āĻŦেāĻ – āϏ্āϰোāϤেāϰ āĻĒ্āϰāϤিāĻূāϞে āύৌāĻাāϰ āĻŦেāĻ) /2 = (10 – 2)/2= = 4 āĻি.āĻŽি.
• āĻāĻāĻি āύৌāĻা āϏ্āϰোāϤেāϰ āĻ āύুāĻূāϞে āĻāύ্āĻাāϝ় 8 āĻি.āĻŽি.āĻāĻŦং āϏ্āϰোāϤেāϰ āĻĒ্āϰāϤিāĻূāϞে āĻāύ্āĻাāϝ় 4 āĻি.āĻŽি.āϝাāϝ়। āύৌāĻাāϰ āĻŦেāĻ āĻāϤ?
āĻেāĻāύিāĻঃ āύৌāĻাāϰ āĻŦেāĻ = (āϏ্āϰোāϤেāϰ āĻ āύুāĻূāϞে āύৌāĻাāϰ āĻŦেāĻ+āϏ্āϰোāϤেāϰ āĻĒ্āϰāϤিāĻূāϞে āύৌāĻাāϰ āĻŦেāĻ)/2= (8 + 4)/2=6 āĻি.āĻŽি.
• āύৌāĻা āĻ āϏ্āϰোāϤেāϰ āĻŦেāĻ āĻāύ্āĻাāϝ় āϝāĻĨাāĻ্āϰāĻŽে 10 āĻি.āĻŽি. āĻ 5 āĻি.āĻŽি.। āύāĻĻীāĻĒāĻĨে 45 āĻি.āĻŽি. āĻĒāĻĨ āĻāĻāĻŦাāϰ āĻিāϝ়ে āĻĢিāϰে āĻāϏāϤে āĻāϤ āϏāĻŽāϝ় āϞাāĻāĻŦে?
āĻেāĻāύিāĻঃ āĻŽােāĻ āϏāĻŽāϝ় = [(āĻŽােāĻ āĻĻূāϰāϤ্āĻŦ/ āĻ āύুāĻূāϞে āĻŦেāĻ) + (āĻŽােāĻ āĻĻূāϰāϤ্āĻŦ/āĻĒ্āϰāϤিāĻূāϞে āĻŦেāĻ)]
āĻāϤ্āϤāϰ:āϏ্āϰোāϤেāϰ āĻ āύুāĻূāϞে āύৌāĻাāϰāĻŦেāĻ = (10+5) = 15 āĻি.āĻŽি.
āϏ্āϰোāϤেāϰ āĻĒ্āϰāϤিāĻূāϞে āύৌāĻাāϰ āĻŦেāĻ = (10-5) = 5āĻি.āĻŽি.
[(45/15) +(45/5)]
= 3+9
=12 āĻāύ্āĻা
āϏāĻŽাāύ্āϤāϰ āϧাāϰাāϰ āĻ্āϰāĻŽিāĻ āϏংāĻ্āϝাāϰ āϝোāĻāĻĢāϞ
(āϝāĻāύ āϏংāĻ্āϝাāĻি1 āĻĨেāĻে āĻļুāϰু)1+2+3+4+……+n āĻšāϞে āĻāϰূāĻĒ āϧাāϰাāϰ āϏāĻŽāώ্āĻি= [n(n+1)/2]
n=āĻļেāώ āϏংāĻ্āϝা āĻŦা āĻĒāĻĻ āϏংāĻ্āϝা s=āϝোāĻāĻĢāϞ
Advertisements
āĻĒ্āϰāĻļ্āύঃ 1+2+3+….+100 =?
āϏāĻŽাāϧাāύঃ[n(n+1)/2]
= [100(100+1)/2]
= 5050
• āϏāĻŽাāύ্āϤāϰ āϧাāϰাāϰ āĻŦāϰ্āĻ āϝোāĻ āĻĒāĻĻ্āϧāϤিāϰ āĻ্āώেāϤ্āϰে,-
āĻĒ্āϰāĻĨāĻŽ n āĻĒāĻĻেāϰ āĻŦāϰ্āĻেāϰ āϏāĻŽāώ্āĻি
S= [n(n+1)2n+1)/6]
(āϝāĻāύ 1² + 2²+ 3² + 4²…….. +n²)
āĻĒ্āϰāĻļ্āύঃ(1² + 3²+ 5² + ……. +31²) āϏāĻŽাāύ āĻāϤ?
āϏāĻŽাāϧাāύঃ S=[n(n+1)2n+1)/6]
= [31(31+1)2×31+1)/6]
=31
• āϏāĻŽাāύ্āϤāϰ āϧাāϰাāϰ āĻāύāϝোāĻ āĻĒāĻĻ্āϧāϤিāϰ āĻ্āώেāϤ্āϰে-
āĻĒ্āϰāĻĨāĻŽ n āĻĒāĻĻেāϰ āĻāύেāϰ āϏāĻŽāώ্āĻি S= [n(n+1)/2]2
(āϝāĻāύ 1³+2³+3³+………….+n³)
āĻĒ্āϰāĻļ্āύঃ1³+2³+3³+4³+…………+10³=?
āϏāĻŽাāϧাāύঃ [n(n+1)/2]2
= [10(10+1)/2]2
= 3025
• āĻĒāĻĻ āϏংāĻ্āϝা āĻ āĻĒāĻĻ āϏংāĻ্āϝাāϰ āϏāĻŽāώ্āĻি āύিāϰ্āύāϝ়েāϰ āĻ্āώেāϤ্āϰেঃ
āĻĒāĻĻ āϏংāĻ্āϝা N= [(āĻļেāώ āĻĒāĻĻ – āĻĒ্āϰāĻĨāĻŽ āĻĒāĻĻ)/āĻĒ্āϰāϤি āĻĒāĻĻে āĻŦৃāĻĻ্āϧি] +1
āĻĒ্āϰāĻļ্āύঃ5+10+15+…………+50=?
āϏāĻŽাāϧাāύঃ āĻĒāĻĻāϏংāĻ্āϝা = [(āĻļেāώ āĻĒāĻĻ – āĻĒ্āϰāĻĨāĻŽāĻĒāĻĻ)/āĻĒ্āϰāϤি āĻĒāĻĻে āĻŦৃāĻĻ্āϧি]+1
= [(50 – 5)/5] + 1
=10
āϏুāϤāϰাং āĻĒāĻĻ āϏংāĻ্āϝাāϰ āϏāĻŽāώ্āĻি
= [(5 + 50)/2] ×10
= 275
• n āϤāĻŽ āĻĒāĻĻ=a + (n-1)d
āĻāĻাāύে, n =āĻĒāĻĻāϏংāĻ্āϝা, a = 1āĻŽ āĻĒāĻĻ, d= āϏাāϧাāϰāĻŖ āĻ āύ্āϤāϰ
āĻĒ্āϰāĻļ্āύঃ 5+8+11+14+…….āϧাāϰাāĻিāϰ āĻোāύ āĻĒāĻĻ 302?
āϏāĻŽাāϧাāύঃ āϧāϰি, n āϤāĻŽ āĻĒāĻĻ =302
āĻŦা, a + (n-1)d=302
āĻŦা, 5+(n-1)3 =302
āĻŦা, 3n=300
āĻŦা, n=100
• āϏāĻŽাāύ্āϤāϰ āϧাāϰাāϰ āĻ্āϰāĻŽিāĻ āĻŦিāĻোāĻĄ় āϏংāĻ্āϝাāϰ āϝোāĻāĻĢāϞ-S=M² āĻāĻাāύে,M=āĻŽāϧ্āϝেāĻŽা=(1āĻŽ āϏংāĻ্āϝা+āĻļেāώ āϏংāĻ্āϝা)/2
āĻĒ্āϰāĻļ্āύঃ1+3+5+…….+19=āĻāϤ?
āϏāĻŽাāϧাāύঃ S=M²
={(1+19)/2}²
=(20/2)²
=100
āĻŦāϰ্āĻ
• ²=1,(11)²=121,(111)²=12321,(1111)²=1234321,(11111)²=123454321
āύিāϝ়āĻŽ-āϝāϤāĻুāϞো 1 āĻĒাāĻļাāĻĒাāĻļি āύিāϝ়ে āĻŦāϰ্āĻ āĻāϰা āĻšāĻŦে, āĻŦāϰ্āĻ āĻĢāϞে 1 āĻĨেāĻে āĻļুāϰু āĻāϰে āĻĒāϰ āĻĒāϰ āϏেāĻ āϏংāĻ্āϝা āĻĒāϰ্āϝāύ্āϤ āϞিāĻāϤে āĻšāĻŦে āĻāĻŦং āϤাāϰāĻĒāϰ āϏেāĻ āϏংāĻ্āϝাāϰ āĻĒāϰ āĻĨেāĻে āĻ āϧঃāĻ্āϰāĻŽে āĻĒāϰāĻĒāϰ āϏংāĻ্āϝাāĻুāϞো āϞিāĻে 1 āϏংāĻ্āϝাāϝ় āĻļেāώ āĻāϰāϤে āĻšāĻŦে।
• (3)²=9,(33)²=1089,(333)²=110889,(3333)²=11108889,(33333)²=1111088889
āϝāϤāĻুāϞি 3 āĻĒাāĻļাāĻĒাāĻļি āύিāϝ়ে āĻŦāϰ্āĻ āĻāϰা āĻšāĻŦে, āĻŦāϰ্āĻ āĻĢāϞে āĻāĻāĻেāϰ āĻāϰে 9 āĻāĻŦং 9 āĻāϰ āĻŦাঁāĻĻিāĻে āϤাāϰ āĻেāϝ়ে (āϝāϤāĻুāϞো 3 āĻĨাāĻāĻŦে) āĻāĻāĻি āĻāĻŽ āϏংāĻ্āϝāĻ 8, āϤাāϰ āĻĒāϰ āĻŦাঁāĻĻিāĻে āĻāĻāĻি 0 āĻāĻŦং āĻŦাঁāĻĻিāĻে 8 āĻāϰ āϏāĻŽāϏংāĻ্āϝāĻ 1 āĻŦāϏāĻŦে।
• (6)²=36,(66)²=4356,(666)²=443556,(6666)²=44435556,(66666)²=4444355556
āϝāϤāĻুāϞি 6 āĻĒাāĻļাāĻĒাāĻļি āύিāϝ়ে āĻŦāϰ্āĻ āĻāϰা āĻšāĻŦে, āĻŦāϰ্āĻ āĻĢāϞে āĻāĻāĻেāϰ āĻāϰে 6 āĻāĻŦং 6 āĻāϰ āĻŦাঁāĻĻিāĻে āϤাāϰ āĻেāϝ়ে (āϝāϤāĻুāϞো 6 āĻĨাāĻāĻŦে) āĻāĻāĻি āĻāĻŽ āϏংāĻ্āϝāĻ 5, āϤাāϰ āĻĒāϰ āĻŦাঁāĻĻিāĻে āĻāĻāĻি 3 āĻāĻŦং āĻŦাঁāĻĻিāĻে 5 āĻāϰ āϏāĻŽāϏংāĻ্āϝāĻ 4 āĻŦāϏāĻŦে।
• (9)²=81,(99)²=9801,(999)²=998001,(9999)²=99980001,(99999)²=9999800001
āϝāϤāĻুāϞি 9 āĻĒাāĻļাāĻĒাāĻļি āύিāϝ়ে āĻŦāϰ্āĻ āĻāϰা āĻšāĻŦে, āĻŦāϰ্āĻ āĻĢāϞে āĻāĻāĻেāϰ āĻāϰে 1 āĻāĻŦং 1 āĻāϰ āĻŦাঁāĻĻিāĻে āϤাāϰ āĻেāϝ়ে (āϝāϤāĻুāϞো 9 āĻĨাāĻāĻŦে) āĻāĻāĻি āĻāĻŽ āϏংāĻ্āϝāĻ 0, āϤাāϰ āĻĒāϰ āĻŦাঁāĻĻিāĻে āĻāĻāĻি 8 āĻāĻŦং āĻŦাঁāĻĻিāĻে 0 āĻāϰ āϏāĻŽāϏংāĻ্āϝāĻ 9 āĻŦāϏāĻŦে।
āĻāύāĻ≠Father
• Numerology (āϏংāĻ্āϝাāϤāϤ্āϤ্āĻŦ)- Pythagoras(āĻĒিāĻĨাāĻোāϰাāϏ)
• Geometry(āĻ্āϝাāĻŽিāϤি)- Euclid(āĻāĻāĻ্āϞিāĻĄ)
• Calculus(āĻ্āϝাāϞāĻুāϞাāϏ)- Newton(āύিāĻāĻāύ)
• Matrix(āĻŽ্āϝাāĻ্āϰিāĻ্āϏ) – Arthur Cayley(āĻ āϰ্āĻĨাāϰ āĻ্āϝাāϞে)
• Trigonometry(āϤ্āϰিāĻোāĻŖāĻŽিāϤি)Hipparchus(āĻšিāĻĒ্āĻĒাāϰāĻাāϏ)
• Arithmetic(āĻĒাāĻিāĻāĻŖিāϤ) Brahmagupta(āĻŦ্āϰāĻš্āĻŽāĻুāĻĒ্āϤ)
• Algebra(āĻŦীāĻāĻāĻŖিāϤ)- Muhammad ibn Musa al-Khwarizmi(āĻŽােāĻšাāĻŽ্āĻŽāĻĻ āĻŽুāϏা āĻāϞ āĻাāϰিāĻāĻŽী)
• Logarithm(āϞāĻাāϰিāĻĻāĻŽ)- John Napier(āĻāύ āύেāĻĒিāϝ়াāϰ)
• Set theory(āϏেāĻ āϤāϤ্āϤ্āĻŦ)- George Cantor(āĻāϰ্āĻ āĻ্āϝাāύ্āĻāϰ)
• Zero(āĻļূāύ্āϝ)- Brahmagupta(āĻŦ্āϰāĻš্āĻŽāĻুāĻĒ্āϤ)
āĻ āĻ্āĻেāϰ āĻংāϰেāĻি āĻļāĻŦ্āĻĻ-āĻĒাāĻিāĻāĻŖিāϤ āĻ āĻĒāϰিāĻŽিāϤি
āĻ āĻ্āĻ-Digit, āĻ āύুāĻĒাāϤ-Ratio, āĻŽৌāϞিāĻ āϏংāĻ্āϝা—Prime number, āĻĒূāϰ্āĻŖāĻŦāϰ্āĻ-Perfect square,āĻā§āĻĒাāĻĻāĻ-Factor,āĻ্āϰāĻŽিāĻ āϏāĻŽাāύুāĻĒাāϤী—Continued proportion, āĻ্āϰāϝ়āĻŽূāϞ্āϝ -Cost price, āĻ্āώāϤি-Loss, āĻāĻĄ়-Average, āĻāϤিāĻŦেāĻ-Velocity, āĻুāĻŖāĻĢāϞ-Product, āĻ,āϏা,āĻু-Highest Common Factor, āĻাāϤ-Power, āĻāύāĻŽূāϞ—Cube root, āĻāύāĻ-Cube, āĻāύāĻĢāϞ-Volume, āĻĒূāϰ্āύāϏংāĻ্āϝা-Integer, āĻাāĻĒ-Arc, āĻোāĻ-Cylinder, āĻ্āϝা-Chord, āĻোāĻĄ় āϏংāĻ্āϝা-Even number, āϧ্āϰুāĻŦāĻ-Constant, āĻĒāϰিāϏীāĻŽা-Perimeter, āĻŦাāϏ্āϤāĻŦ-Real, āĻŦāϰ্āĻāĻŽূāϞ-Square root, āĻŦ্āϝāϏ্āϤ āĻ āύুāĻĒাāϤ—Inverse ratio, āĻŦিāĻোāĻĄ়āϏংāĻ্āϝা—Odd number, āĻŦিāĻ্āϰāϝ়āĻŽূāϞ্āϝ -Selling price, āĻŦীāĻāĻāĻŖিāϤ—Algebra, āĻŽূāϞāĻĻ Rational, āĻŽāϧ্āϝ āϏāĻŽাāύুāĻĒাāϤী -Mean proportional, āϝােāĻāĻĢāϞ=Sum
āϞ,āϏা,āĻু-Lowest Common Multiple, āϞāĻŦ-Numerator, āĻļāϤāĻāϰা-Percentage, āϏāĻŽাāύুāĻĒাāϤ-Proportion, āϏāĻŽাāύুāĻĒাāϤী-Proportional, āϏুāĻĻ-Interest, āĻšāϰ-Denominator,
āĻ্āϝাāĻŽিāϤি
āĻ āϤিāĻূāĻ—Hypotenuse, āĻ āύ্āϤঃāĻোāĻŖ-Internal angle, āĻ āϰ্āϧāĻŦৃāϤ্āϤ-Semi-circle, āĻ āύ্āϤ āĻŦ্āϝাāϏাāϰ্āϧ-In-radius, āĻāϝ়āϤāĻ্āώেāϤ্āϰ-Rectangle, āĻāĻ্āĻāϤা-Height, āĻāϰ্āĻŖ–Diagonal, āĻোāĻŖ-Angle, āĻেāύ্āĻĻ্āϰ-Centre, āĻােāϞāĻ-Sphere, āĻāϤুāϰ্āĻুāĻ-Quadrilateral, āĻোāĻ-Cylinder,āĻ্āϝাāĻŽিāϤি-Geometry,āĻĻৈāϰ্āĻ্āϝ-Length, āĻĒāĻ্āĻāĻূāĻ -Pentagon, āĻĒ্āϰāϏ্āĻĨ-Breadth,āĻĒূāϰāĻāĻোāύ-Complementary angles, āĻŦাāĻšু-Side, āĻŦৃāϤ্āϤ-Circle, āĻŦ্āϝাāϏাāϰ্āϧ-Radius, āĻŦ্āϝাāϏ-Diameter, āĻŦāĻšুāĻূāĻ-Polygon, āĻŦāϰ্āĻāĻ্āώেāϤ্āϰ—Square, āĻŦāĻšি:āϏ্āĻĨ External, āĻļāĻ্āĻু-Cone, āϏāĻŽāĻোāĻŖ-Right angle, āϏāĻŽāĻŦাāĻšু āϤ্āϰিāĻূāĻ-Equilateral triangle, āĻ āϏāĻŽāĻŦাāĻšু āϤ্āϰিāĻূāĻ—Scalene triangle, āϏāĻŽāĻĻ্āĻŦিāĻŦাāĻšু āϤ্āϰিāĻূāĻ-isosceles Triangle,āϏāĻŽāĻোāĻŖী āϤ্āϰিāĻুāĻ Right angled triangle, āϏূāĻ্āώ্āĻŽāĻোāĻŖী-Acute angled triangle, āϏ্āĻĨূāϞāĻোāĻŖী āϤ্āϰিāĻুāĻ Obtuse angled triangle, āϏāĻŽাāύ্āϤāϰাāϞ—Parallel, āϏāϰāϞāϰেāĻা—Straight line, āϏāĻŽ্āĻĒূāϰāĻ āĻোāĻŖ—Supplementary angles, āϏāĻĻৃāĻļāĻোāĻŖী-Equiangular
āϰোāĻŽাāύ āϏংāĻ্āϝা≠ Roman Numerals
1:I,2: II,3: III,4: IV,5: V,6: VI,7: VII,8: VIII,9: IX,10: X,11: XI,12: XII,13: XIII,14: XIV,15: XV,16: XVI,17: XVII,18: XVIII,19: XIX,20: XX,30: XXX,40: XL,50: L,60: LX,70: LXX,80: LXXX,90: XC,100: C,200: CC,300: CCC,400: CD,500: D,600: DC, 700:DCC,800: DCCC,900: CM,1000:M
āĻāϰāĻ āĻিāĻু āĻেāĻāύিāĻ
• āĻোāĻĄ় āϏংāĻ্āϝা + āĻোāĻĄ় āϏংāĻ্āϝা = āĻোāĻĄ়
āϏংāĻ্āϝা।
āϝেāĻŽāύঃ 2 + 6 = 8.
• āĻোāĻĄ় āϏংāĻ্āϝা + āĻŦিāĻোāĻĄ় āϏংāĻ্āϝা =
āĻŦিāĻোāĻĄ় āϏংāĻ্āϝা।
āϝেāĻŽāύঃ 6 + 7 = 13.
• āĻŦিāĻোāĻĄ় āϏংāĻ্āϝা + āĻŦিāĻোāĻĄ় āϏংāĻ্āϝা =
āĻোāĻĄ় āϏংāĻ্āϝা।
āϝেāĻŽāύঃ 3 + 5 = 8.
• āĻোāĻĄ় āϏংāĻ্āϝা × āĻোāĻĄ় āϏংāĻ্āϝা = āĻোāĻĄ়
āϏংāĻ্āϝা।
āϝেāĻŽāύঃ 6 × 8 = 48.
• āĻোāĻĄ় āϏংāĻ্āϝা × āĻŦিāĻোāĻĄ় āϏংāĻ্āϝা = āĻোāĻĄ়
āϏংāĻ্āϝা।
āϝেāĻŽāύঃ 6 × 7 = 42
• āĻŦিāĻোāĻĄ় āϏংāĻ্āϝা × āĻŦিāĻোāĻĄ় āϏংāĻ্āϝা =
āĻŦিāĻোāĻĄ় āϏংāĻ্āϝা।
āϝেāĻŽāύঃ 3 × 9 = 27
Comments