Formula math
āĻāĻŖিāϤেāϰ ⧍ā§Ļā§Ļ⁺ āϏূāϤ্āϰ āĻ āĻļāϰ্āĻāĻাāĻ āĻেāĻāύিāĻ ➺ āĻāĻāύিāĻোāĻĄ āĻŽ্āϝাāĻĨ āĻ্āϝাāϰেāĻ্āĻাāϰে āĻāϰা āϤাāĻ āϏāĻŦāĻাāύে āϏাāĻĒোāϰ্āĻ āĻāϰāĻŦে
❏ (đ+đ)² = đ²+đ²+2đđ | = (đ – đ)²+4đđ
❏ đ² + đ² = (đ+đ)² – 2đđ | = (đ – đ)²+2đđ.
❏ đĨ + ⅟đĨ = đ ➺ đĨ² + ⅟đĨ² = đ² – 2 | đĨ³ + ⅟đĨ³ = đ³ – 3đ
❏ đĨ – ⅟đĨ = đ ➺ đĨ² + ⅟đĨ² = đ²+2 | đĨ³ + ⅟đĨ³ = đ³+ 3đ
❏ (đ – đ)² = đ² – 2đđ+đ² | = (đ+đ)² – 4đđ
❏ đ² – đ² = (đ +đ)(đ – đ)
❏ 2(đ²+đ²) = (đ+đ)²+(đ – đ)²
❏ 4đđ = (đ+đ)² – (đ – đ)²
❏ đđ = {(đ+đ)/2}² – {(đ – đ)/2}²
đ ⧍ āϞāĻ্āώাāϧিāĻ āĻĒ্āϰāĻļ্āύেāϰ āϏ্āĻŦā§ংāϏāĻŽ্āĻĒূāϰ্āĻŖ āĻāĻŦ āϏāϞিāĻāĻļāύ āĻĢ্āϰি āĻ ্āϝাāĻĒ.!đāϏাāϰ্āĻ UJS ➺ app.ebook.com.bd
❏ (đ+đ+đ)² = đ²+đ²+đ²+2(đđ+đđ+đđ)
❏ (đ+đ)³ = đ³+3đ²đ+3đđ²+đ³
❏ (đ+đ)³ = đ³+đ³+3đđ(đ+đ)
❏ đ – đ)³ = đ³ – 3đ²đ+3đđ² – đ³
❏ (đ – đ)³ = đ³ – đ³ – 3đđ(đ – đ)
❏ đ³+đ³ = (đ+đ) (đ² – đđ+đ²)
❏ đ³+đ³ = (đ+đ)³ – 3đđ(đ+đ)
❏ đ³ – đ³ = (đ – đ) (đ²+đđ+đ²)
❏ đ³ – đ³ = (đ – đ)³+3đđ(đ – đ)
đ ⧍ āϞāĻ্āώাāϧিāĻ āĻĒ্āϰāĻļ্āύেāϰ āĻĢ্āϰি āĻ ্āϝাāĻĒ.!đāϏাāϰ্āĻ UJS ➺ app.ebook.com.bd
❏ (đ² + đ² + đ²) = (đ + đ + đ)² – 2(đđ + đđ + đđ)
❏ 2 (đđ + đđ + đđ) = (đ + đ + đ)² – (đ² + đ² + đ²)
❏ (đ + đ + đ)³ = đ³ + đ³ + đ³ + 3 (đ + đ) (đ + đ) (đ + đ)
❏ đ³ + đ³ + đ³ – 3đđđ = (đ+đ+đ)(đ² + đ²+ đ²–đđ–đđ– đđ)
❏ đ3 + đ3 + đ3 – 3đđđ = ½ (đ+đ+đ) { (đ–đ)²+(đ–đ)²+(đ–đ)²}
❏ (đĨ + đ) (đĨ + đ) = đĨ² + (đ + đ) đĨ + đđ
❏ (đĨ + đ) (đĨ – đ) = đĨ² + (đ – đ) đĨ – đđ
❏ (đĨ – đ) (đĨ + đ) = đĨ² + (đ – đ) đĨ – đđ
❏ (đĨ – đ) (đĨ – đ) = đĨ² – (đ + đ) đĨ + đđ
đ ⧍ āϞāĻ্āώাāϧিāĻ āĻĒ্āϰāĻļ্āύেāϰ āϏ্āĻŦā§ংāϏāĻŽ্āĻĒূāϰ্āĻŖ āĻāĻŦ āϏāϞিāĻāĻļāύ āĻĢ্āϰি āĻ ্āϝাāĻĒ.!đāϏাāϰ্āĻ UJS ➺ app.ebook.com.bd
❏ (đĨ+p) (đĨ+q) (đĨ+r) = đĨ³ + (p+q+r) đĨ² + (pq+qr+rp) đĨ +pqr
❏ đđ (đ – đ) + đđ(đ – đ) + đđ(đ – đ) = – (đ – đ) (đ – đ) (đ – đ)
❏ đ² (đ – đ) + đ²(đ – đ) + đ²(đ – đ) = – (đ – đ) (đ – đ) (đ – đ)
❏ đ (đ² – đ²) + đ(đ² – đ²) + đ(đ² – đ²) = (đ – đ) (đ – đ) (đ – đ)
❏ đ³ (đ – đ) + đ³ (đ – đ) +đ³ (đ – đ) = – (đ – đ) (đ – đ) (đ – đ)(đ + đ + đ)
❏ đ² – đ²(đ² – đ²) + đ²đ²(đ² – đ²)+đ²đ²(đ² – đ²) = – (đ – đ) (đ – đ) (đ – đ) (đ+đ) (đ+đ) (đ+đ)
❏ (đđ + đđ+đđ) (đ+đ+đ) – đđđ = (đ + đ)(đ + đ) (đ+đ)
❏ (đ + đ)(đ + đ)(đ + đ) + đđđ = (đ + đ +đ) (đđ + đđ + đđ)
đ āĻ āϏংāĻ্āϝ āύিāϤ্āϝ-āύāϤুāύ āĻāĻŽāĻāĻĒ্āϰāĻĻ āĻĢিāĻাāϰ āύিā§ে āĻĒুāϰোāĻĒুāϰি āύāϤুāύ āĻāĻ্āϏāĻĒেāϰিā§েāύ্āϏে UJS āĻ ্āϝাāĻĒেāϰ āϏ্āĻ্āϝাāĻŦāϞ āĻ āϏ্āĻŦā§ংāϏāĻŽ্āĻĒূāϰ্āĻŖ āĻাāϰ্āϏāύ~ā§.ā§.ā§ āϰিāϞিāĻ āĻšā§েāĻে.! āϝা āĻāĻĒāύাāϰ āĻাāĻāϰিāϰ āĻĒ্āϰāϏ্āϤুāϤি āĻļāϤāĻাāĻ āϏāĻŽ্āĻĒূāϰ্āĻŖ āĻāϰাāϰ āĻāύ্āϝ āϝāĻĨেāώ্āĻ। āϏ্āĻŦāϞ্āĻĒ āϏāĻŽā§ে āϏāϰ্āĻŦাāϧিāĻ āĻĒ্āϰāϏ্āϤুāϤিāϰ āĻļ্āϰেāώ্āĻ āϏāĻšাā§āĻ.!
āĻĻুāϰ্āĻĻাāύ্āϤ āĻĢিāĻাāϰāϏāĻŽূāĻš āĻĒেāϤে āĻ ্āϝাāĻĒ āĻāĻĒāĻĄেāĻ āĻāϰুāύ đ āĻĒ্āϞেāϏ্āĻোāϰ āϏাāϰ্āĻ 'UJS' āĻŦা app.ebook.com.bd
đ āĻāϝ়āϤāĻ্āώেāϤ্āϰ
❏ āĻāϝ়āϤāĻ্āώেāϤ্āϰেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ = (āĻĻৈāϰ্āĻ্āϝ ⨉ āĻĒ্āϰāϏ্āĻĨ) āĻŦāϰ্āĻ āĻāĻāĻ
❏ āĻāϝ়āϤāĻ্āώেāϤ্āϰেāϰ āĻĒāϰিāϏীāĻŽা = 2 (āĻĻৈāϰ্āĻ্āϝ+āĻĒ্āϰāϏ্āĻĨ) āĻāĻāĻ
❏ āĻāϝ়āϤāĻ্āώেāϤ্āϰেāϰ āĻāϰ্āĻŖ = √(āĻĻৈāϰ্āĻ্āϝ²+āĻĒ্āϰāϏ্āĻĨ²) āĻāĻāĻ
❏ āĻāϝ়āϤāĻ্āώেāϤ্āϰেāϰ āĻĻৈāϰ্āĻ্āϝ = āĻ্āώেāϤ্āϰāĻĢāϞ÷āĻĒ্āϰāϏ্āϤ āĻāĻāĻ
❏ āĻāϝ়āϤāĻ্āώেāϤ্āϰেāϰ āĻĒ্āϰāϏ্āϤ = āĻ্āώেāϤ্āϰāĻĢāϞ÷āĻĻৈāϰ্āĻ্āϝ āĻāĻāĻ
đ ⧍ āϞāĻ্āώাāϧিāĻ āĻĒ্āϰāĻļ্āύেāϰ āϏ্āĻŦā§ংāϏāĻŽ্āĻĒূāϰ্āĻŖ āĻāĻŦ āϏāϞিāĻāĻļāύ āĻĢ্āϰি āĻ ্āϝাāĻĒ.!đāϏাāϰ্āĻ UJS ➺ app.ebook.com.bd
đ āĻŦāϰ্āĻāĻ্āώেāϤ্āϰ
❏ āĻŦāϰ্āĻāĻ্āώেāϤ্āϰেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ = (āϝে āĻোāύ āĻāĻāĻি āĻŦাāĻšুāϰ āĻĻৈāϰ্āĻ্āϝ)² āĻŦāϰ্āĻ āĻāĻāĻ
❏ āĻŦāϰ্āĻāĻ্āώেāϤ্āϰেāϰ āĻĒāϰিāϏীāĻŽা = 4 ⨉ āĻāĻ āĻŦাāĻšুāϰ āĻĻৈāϰ্āĻ্āϝ āĻāĻāĻ
❏ āĻŦāϰ্āĻāĻ্āώেāϤ্āϰেāϰ āĻāϰ্āĻŖ = √2 ⨉ āĻāĻ āĻŦাāĻšুāϰ āĻĻৈāϰ্āĻ্āϝ āĻāĻāĻ
❏ āĻŦāϰ্āĻāĻ্āώেāϤ্āϰেāϰ āĻŦাāĻšু = √āĻ্āώেāϤ্āϰāĻĢāϞ āĻŦা āĻĒāϰিāϏীāĻŽা/4 āĻāĻāĻ
đ āϤ্āϰিāĻূāĻ
❏ āϏāĻŽāĻŦাāĻšু āϤ্āϰিāĻূāĻেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ = √¾ ⨉ (āĻŦাāĻšু)²
❏ āϏāĻŽāĻŦাāĻšু āϤ্āϰিāĻূāĻেāϰ āĻāĻ্āĻāϤা = √3/2 ⨉ (āĻŦাāĻšু)
❏ āĻŦিāώāĻŽāĻŦাāĻšু āϤ্āϰিāĻুāĻেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ = √s(s – đ) (s – đ) (s – đ) ◈āĻāĻাāύে đ, đ, đ āϤ্āϰিāĻুāĻেāϰ āϤিāύāĻি āĻŦাāĻšুāϰ āĻĻৈāϰ্āĻ্āϝ, s = āĻ āϰ্āϧāĻĒāϰিāϏীāĻŽা◈āĻĒāϰিāϏীāĻŽা 2s = (đ+đ+đ)
❏ āϏাāϧাāϰāĻŖ āϤ্āϰিāĻূāĻেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ = ½ (āĻূāĻŽি ⨉ āĻāĻ্āĻāϤা) āĻŦāϰ্āĻ āĻāĻāĻ
❏ āϏāĻŽāĻোāĻŖী āϤ্āϰিāĻূāĻেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ = ½(đ ⨉ đ) ◈āĻāĻাāύে āϤ্āϰিāĻুāĻেāϰ āϏāĻŽāĻোāĻŖ āϏংāϞāĻ্āύ āĻŦাāĻšুāĻĻ্āĻŦāϝ় đ āĻāĻŦং đ.
❏ āϏāĻŽāĻĻ্āĻŦিāĻŦাāĻšু āϤ্āϰিāĻূāĻেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ = 2√4 đ² – đ²/4 āĻāĻাāύে, đ = āĻূāĻŽি; đ = āĻ āĻĒāϰ āĻŦাāĻšু।
❏ āϤ্āϰিāĻুāĻেāϰ āĻāĻ্āĻāϤা = 2 ⨉ (āĻ্āώেāϤ্āϰāĻĢāϞ/āĻূāĻŽি)
❏ āϏāĻŽāĻোāĻŖী āϤ্āϰিāĻুāĻেāϰ āĻ āϤিāĻুāĻ = √ āϞāĻŽ্āĻŦ²+āĻূāĻŽি²
❏ āϞāĻŽ্āĻŦ = √āĻ āϤিāĻূāϲ – āĻূāĻŽি²
❏ āĻূāĻŽি = √āĻ āϤিāĻূāϲ – āϞāĻŽ্āĻŦ²
❏ āϏāĻŽāĻĻ্āĻŦিāĻŦাāĻšু āϤ্āϰিāĻুāĻেāϰ āĻāĻ্āĻāϤা = √đ² – đ²/4 ◈āĻāĻাāύে đ = āĻূāĻŽি; đ = āϏāĻŽাāύ āĻĻুāĻ āĻŦাāĻšুāϰ āĻĻৈāϰ্āĻ্āϝ।
❏ āϤ্āϰিāĻুāĻেāϰ āĻĒāϰিāϏীāĻŽা = āϤিāύ āĻŦাāĻšুāϰ āϏāĻŽāώ্āĻি
đ ⧍ āϞāĻ্āώাāϧিāĻ āĻĒ্āϰāĻļ্āύেāϰ āĻĢ্āϰি āĻ ্āϝাāĻĒ.!đāϏাāϰ্āĻ UJS ➺ app.ebook.com.bd
đ āϰāĻŽ্āĻŦāϏ
❏ āϰāĻŽ্āĻŦāϏেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ = ½ ⨉ (āĻāϰ্āĻŖāĻĻুāĻāĻিāϰ āĻুāĻŖāĻĢāϞ)
❏ āϰāĻŽ্āĻŦāϏেāϰ āĻĒāϰিāϏীāĻŽা = 4 ⨉ āĻāĻ āĻŦাāĻšুāϰ āĻĻৈāϰ্āĻ্āϝ
đ āϏাāĻŽাāύ্āϤāϰিāĻ
❏ āϏাāĻŽাāύ্āϤāϰিāĻেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ = āĻূāĻŽি ⨉ āĻāĻ্āĻāϤা =
❏ āϏাāĻŽাāύ্āϤāϰিāĻেāϰ āĻĒāϰিāϏীāĻŽা = 2 ⨉ (āϏāύ্āύিāĻšিāϤ āĻŦাāĻšুāĻĻ্āĻŦāϝ়েāϰ āϏāĻŽāώ্āĻি)
đ āĻ্āϰাāĻĒিāĻিāϝ়াāĻŽ
❏ āĻ্āϰাāĻĒিāĻিāϝ়াāĻŽেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ = ½ ⨉ (āϏāĻŽাāύ্āϤāϰাāϞ āĻŦাāĻšু āĻĻুāĻāĻিāϰ āϝোāĻāĻĢāϞ) ⨉ āĻāĻ্āĻāϤা
đ ⧍ āϞāĻ্āώাāϧিāĻ āĻĒ্āϰāĻļ্āύেāϰ āϏ্āĻŦā§ংāϏāĻŽ্āĻĒূāϰ্āĻŖ āĻāĻŦ āϏāϞিāĻāĻļāύ āĻĢ্āϰি āĻ ্āϝাāĻĒ.!đāϏাāϰ্āĻ UJS ➺ app.ebook.com.bd
đ āĻāύāĻ
❏ āĻāύāĻেāϰ āĻāύāĻĢāϞ = (āϝেāĻোāύ āĻŦাāĻšু)³ āĻāύ āĻāĻāĻ
❏ āĻāύāĻেāϰ āϏāĻŽāĻ্āϰāϤāϞেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ = 6 ⨉ āĻŦাāĻšু² āĻŦāϰ্āĻ āĻāĻāĻ
❏ āĻāύāĻেāϰ āĻāϰ্āĻŖ = √3 ⨉ āĻŦাāĻšু āĻāĻāĻ
đ āĻāϝ়āϤāĻāύāĻ
❏ āĻāϝ়āϤāĻāύāĻেāϰ āĻāύāĻĢāϞ = (āĻĻৈā§°্āĻা ⨉ āĻĒ্āϰāϏ্āϤ ⨉ āĻāĻ্āĻāϤা) āĻāύ āĻāĻāĻ
❏ āĻāϝ়āϤāĻāύāĻেāϰ āϏāĻŽāĻ্āϰāϤāϞেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ = 2(đđ + đđ + đđ) āĻŦāϰ্āĻ āĻāĻāĻ [ āϝেāĻাāύে đ = āĻĻৈāϰ্āĻ্āϝ đ = āĻĒ্āϰāϏ্āϤ đ = āĻāĻ্āĻāϤা ]
❏ āĻāϝ়āϤāĻāύāĻেāϰ āĻāϰ্āĻŖ = √đ²+đ²+đ² āĻāĻāĻ
❏ āĻাāϰি āĻĻেāĻāϝ়াāϞেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ = 2 (āĻĻৈāϰ্āĻ্āϝ + āĻĒ্āϰāϏ্āĻĨ) ⨉ āĻāĻ্āĻāϤা
đ āĻ āϏংāĻ্āϝ āύিāϤ্āϝ-āύāϤুāύ āĻāĻŽāĻāĻĒ্āϰāĻĻ āĻĢিāĻাāϰ āύিā§ে āĻĒুāϰোāĻĒুāϰি āύāϤুāύ āĻāĻ্āϏāĻĒেāϰিā§েāύ্āϏে UJS āĻ ্āϝাāĻĒেāϰ āϏ্āĻ্āϝাāĻŦāϞ āĻ āϏ্āĻŦā§ংāϏāĻŽ্āĻĒূāϰ্āĻŖ āĻাāϰ্āϏāύ~ā§.ā§.ā§ āϰিāϞিāĻ āĻšā§েāĻে.! āϝা āĻāĻĒāύাāϰ āĻাāĻāϰিāϰ āĻĒ্āϰāϏ্āϤুāϤি āĻļāϤāĻাāĻ āϏāĻŽ্āĻĒূāϰ্āĻŖ āĻāϰাāϰ āĻāύ্āϝ āϝāĻĨেāώ্āĻ। āϏ্āĻŦāϞ্āĻĒ āϏāĻŽā§ে āϏāϰ্āĻŦাāϧিāĻ āĻĒ্āϰāϏ্āϤুāϤিāϰ āĻļ্āϰেāώ্āĻ āϏāĻšাā§āĻ.!
āĻĻুāϰ্āĻĻাāύ্āϤ āĻĢিāĻাāϰāϏāĻŽূāĻš āĻĒেāϤে āĻ ্āϝাāĻĒ āĻāĻĒāĻĄেāĻ āĻāϰুāύ đ āĻĒ্āϞেāϏ্āĻোāϰ āϏাāϰ্āĻ 'UJS' āĻŦা app.ebook.com.bd
đ āĻŦৃāϤ্āϤ
❏ āĻŦৃāϤ্āϤেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ = Īr² = 22/7 ⨉ r² {āĻāĻাāύে Ī = āϧ্āϰুāĻŦāĻ 22/7, āĻŦৃāϤ্āϤেāϰ āĻŦ্āϝাāϏাāϰ্āϧ = r}
❏ āĻŦৃāϤ্āϤেāϰ āĻĒāϰিāϧি = 2Īr
❏ āĻোāϞāĻেāϰ āĻĒৃāώ্āĻ āϤāϞেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ = 4Īr² āĻŦāϰ্āĻ āĻāĻāĻ
❏ āĻোāϞāĻেāϰ āĻāϝ়āϤāύ = 4Īr³/3 āĻāύ āĻāĻāĻ
❏ h āĻāĻ্āĻāϤাāϝ় āϤāϞāĻ্āĻেāĻĻে āĻā§āĻĒāύ্āύ āĻŦৃāϤ্āϤেāϰ āĻŦ্āϝাāϏাāϰ্āϧ = √( r² – h²) āĻāĻāĻ
❏ āĻŦৃāϤ্āϤāĻাāĻĒেāϰ āĻĻৈāϰ্āĻ্āϝ s = Īrθ/180° ,◈āĻāĻাāύে θ = āĻোāĻŖ
đ āϏāĻŽāĻŦৃāϤ্āϤāĻূāĻŽিāĻ āϏিāϞিāύ্āĻĄাāϰ / āĻŦেāϞāύ
◈āϏāĻŽāĻŦৃāϤ্āϤāĻূāĻŽিāĻ āϏিāϞিāύ্āĻĄাāϰেāϰ āĻূāĻŽিāϰ āĻŦ্āϝাāϏাāϰ্āϧ r āĻāĻŦং āĻāĻ্āĻāϤা h āĻāϰ āĻšেāϞাāύো āϤāϞেāϰ āĻāĻ্āĻāϤা l āĻšāϞে,
❏ āϏিāϞিāύ্āĻĄাāϰেāϰ āĻāϝ়āϤāύ = Īr²h
❏ āϏিāϞিāύ্āĻĄাāϰেāϰ āĻŦāĻ্āϰāϤāϞেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ (āϏিāĻāϏāĻ) = 2Īrh।
❏ āϏিāϞিāύ্āĻĄাāϰেāϰ āĻĒৃāώ্āĻ āϤāϞেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ (āĻিāĻāϏāĻ) = 2Īr (h + r)
đ ⧍ āϞāĻ্āώাāϧিāĻ āĻĒ্āϰāĻļ্āύেāϰ āϏ্āĻŦā§ংāϏāĻŽ্āĻĒূāϰ্āĻŖ āĻāĻŦ āϏāϞিāĻāĻļāύ āĻĢ্āϰি āĻ ্āϝাāĻĒ.!đāϏাāϰ্āĻ UJS ➺ app.ebook.com.bd
đ āϏāĻŽāĻŦৃāϤ্āϤāĻূāĻŽিāĻ āĻোāĻŖāĻ
◈āϏāĻŽāĻŦৃāϤ্āϤāĻূāĻŽিāĻ āĻূāĻŽিāϰ āĻŦ্āϝাāϏাāϰ্āϧ r āĻāĻŦং āĻāĻ্āĻāϤা h āĻāϰ āĻšেāϞাāύো āϤāϞেāϰ āĻāĻ্āĻāϤা l āĻšāϞে,
❏ āĻোāĻŖāĻেāϰ āĻŦāĻ্āϰāϤāϞেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ = Īrl āĻŦāϰ্āĻ āĻāĻāĻ
❏ āĻোāĻŖāĻেāϰ āϏāĻŽāϤāϞেāϰ āĻ্āώেāϤ্āϰāĻĢāϞ = Īr(r+l) āĻŦāϰ্āĻ āĻāĻāĻ
❏ āĻোāĻŖāĻেāϰ āĻāϝ়āϤāύ = ⅓Īr²h āĻāύ āĻāĻāĻ
đ āĻŦāĻšুāĻুāĻ
❏ āĻŦāĻšুāĻুāĻেāϰ āĻāϰ্āĻŖেāϰ āϏংāĻ্āϝা = n(n – 3)/2
❏ āĻŦāĻšুāĻুāĻেāϰ āĻোāĻŖāĻুāϞিāϰ āϏāĻŽāώ্āĻি = (2n – 4)āϏāĻŽāĻোāĻŖ ◈āĻāĻাāύে n = āĻŦাāĻšুāϰ āϏংāĻ্āϝা
❏ āĻāϤুāϰ্āĻুāĻেāϰ āĻĒāϰিāϏীāĻŽা = āĻাāϰ āĻŦাāĻšুāϰ āϏāĻŽāώ্āĻি
đ āϤ্āϰিāĻোāĻŖāĻŽিāϤিāϰ āϏূāϤ্āϰাāĻŦāϞীঃ
❏ sinθ = āϞāĻŽ্āĻŦ / āĻ āϤিāĻূāĻ [ āϏা āϞ āĻ āϤি]
❏ cosθ = āĻূāĻŽি / āĻ āϤিāĻূāĻ [ āĻ āĻূ āĻ āϤি]
❏ taneθ = āϞāĻŽ্āĻŦ / āĻূāĻŽি [ āĻে āϞ āĻূ ]
❏ cotθ = āĻূāĻŽি / āϞāĻŽ্āĻŦ
❏ secθ = āĻ āϤিāĻূāĻ / āĻূāĻŽি
❏ cosecθ = āĻ āϤিāĻূāĻ / āϞāĻŽ্āĻŦ
đ ⧍ āϞāĻ্āώাāϧিāĻ āĻĒ্āϰāĻļ্āύেāϰ āĻĢ্āϰি āĻ ্āϝাāĻĒ.!đāϏাāϰ্āĻ UJS ➺ app.ebook.com.bd
❏ sinθ = 1/cosecθ | cosecθ = 1/sinθ
❏ cosθ = 1/secθ | secθ = 1/cosθ
❏ tanθ = 1/cotθ | cotθ = 1/tanθ
❏ sin²Î¸ + cos²Î¸ = 1
❏ sin²Î¸ = 1 – cos²Î¸
❏ cos²Î¸ = 1 – sin²Î¸
❏ sec²Î¸ – tcn²Î¸ = 1
❏ sec²Î¸ = 1+ tcn²Î¸
❏ tcn²Î¸ = sec²Î¸ – 1
❏ cosec²Î¸ – cot²Î¸ = 1
❏ cosec²Î¸ = cot²Î¸ + 1
❏ cot²Î¸ = cosec²Î¸ – 1
đ ⧍ āϞāĻ্āώাāϧিāĻ āĻĒ্āϰāĻļ্āύেāϰ āĻĢ্āϰি āĻ ্āϝাāĻĒ.!đāϏাāϰ্āĻ UJS ➺ app.ebook.com.bd
đ āĻŦিāϝ়োāĻেāϰ āϏূāϤ্āϰাāĻŦāϞি
❏ āĻŦিāϝ়োāĻāύ – āĻŦিāϝ়োāĻ্āϝ = āĻŦিāϝ়োāĻāĻĢāϞ।
❏ āĻŦিāϝ়োāĻāύ = āĻŦিāϝ়োāĻāĻĢ + āĻŦিāϝ়োāĻ্āϝ
❏ āĻŦিāϝ়োāĻ্āϝ = āĻŦিāϝ়োāĻāύ – āĻŦিāϝ়োāĻāĻĢāϞ
đ āĻুāĻŖেāϰ āϏূāϤ্āϰাāĻŦāϞি
❏ āĻুāĻŖāĻĢāϞ = āĻুāĻŖ্āϝ ⨉ āĻুāĻŖāĻ
❏ āĻুāĻŖāĻ = āĻুāĻŖāĻĢāϞ ÷ āĻুāĻŖ্āϝ
❏ āĻুāĻŖ্āϝ = āĻুāĻŖāĻĢāϞ ÷ āĻুāĻŖāĻ
đ āĻাāĻেāϰ āϏূāϤ্āϰাāĻŦāϞি
āύিঃāĻļেāώে āĻŦিāĻাāĻ্āϝ āύা āĻšāϞে
❏ āĻাāĻ্āϝ = āĻাāĻāĻ ⨉ āĻাāĻāĻĢāϞ + āĻাāĻāĻļেāώ।
❏ āĻাāĻ্āϝ = (āĻাāĻ্āϝ – āĻাāĻāĻļেāώ) ÷ āĻাāĻāĻĢāϞ।
❏ āĻাāĻāĻĢāϞ = (āĻাāĻ্āϝ – āĻাāĻāĻļেāώ)÷ āĻাāĻāĻ।
āύিঃāĻļেāώে āĻŦিāĻাāĻ্āϝ āĻšāϞে।
❏ āĻাāĻāĻ = āĻাāĻ্āϝ÷ āĻাāĻāĻĢāϞ।
❏ āĻাāĻāĻĢāϞ = āĻাāĻ্āϝ ÷ āĻাāĻāĻ।
❏ āĻাāĻ্āϝ = āĻাāĻāĻ ⨉ āĻাāĻāĻĢāϞ।
đ āĻāĻ্āύাংāĻļেāϰ āϞ.āϏা.āĻু āĻ āĻ.āϏা.āĻু āϏূāϤ্āϰাāĻŦāϞী
❏ āĻāĻ্āύাংāĻļেāϰ āĻ.āϏা.āĻু = āϞāĻŦāĻুāϞোāϰ āĻ.āϏা.āĻু / āĻšāϰāĻুāϞোāϰ āϞ.āϏা.āĻু
❏ āĻāĻ্āύাংāĻļেāϰ āϞ.āϏা.āĻু = āϞāĻŦāĻুāϞোāϰ āϞ.āϏা.āĻু / āĻšāϰāĻুāϞাāϰ āĻ.āϏা.āĻু
❏ āĻāĻ্āύাংāĻļāĻĻ্āĻŦāϝ়েāϰ āĻুāĻŖāĻĢāϞ = āĻāĻ্āύাংāĻļāĻĻ্āĻŦāϝ়েāϰ āϞ.āϏা.āĻু ⨉ āĻāĻ্āύাংāĻļāĻĻ্āĻŦāϝ়েāϰ āĻ.āϏা.āĻু.
đ āĻ āϏংāĻ্āϝ āύিāϤ্āϝ-āύāϤুāύ āĻāĻŽāĻāĻĒ্āϰāĻĻ āĻĢিāĻাāϰ āύিā§ে āĻĒুāϰোāĻĒুāϰি āύāϤুāύ āĻāĻ্āϏāĻĒেāϰিā§েāύ্āϏে UJS āĻ ্āϝাāĻĒেāϰ āϏ্āĻ্āϝাāĻŦāϞ āĻ āϏ্āĻŦā§ংāϏāĻŽ্āĻĒূāϰ্āĻŖ āĻাāϰ্āϏāύ~ā§.ā§.ā§ āϰিāϞিāĻ āĻšā§েāĻে.! āϝা āĻāĻĒāύাāϰ āĻাāĻāϰিāϰ āĻĒ্āϰāϏ্āϤুāϤি āĻļāϤāĻাāĻ āϏāĻŽ্āĻĒূāϰ্āĻŖ āĻāϰাāϰ āĻāύ্āϝ āϝāĻĨেāώ্āĻ। āϏ্āĻŦāϞ্āĻĒ āϏāĻŽā§ে āϏāϰ্āĻŦাāϧিāĻ āĻĒ্āϰāϏ্āϤুāϤিāϰ āĻļ্āϰেāώ্āĻ āϏāĻšাā§āĻ.!
āĻĻুāϰ্āĻĻাāύ্āϤ āĻĢিāĻাāϰāϏāĻŽূāĻš āĻĒেāϤে āĻ ্āϝাāĻĒ āĻāĻĒāĻĄেāĻ āĻāϰুāύ đ āĻĒ্āϞেāϏ্āĻোāϰ āϏাāϰ্āĻ 'UJS' āĻŦা app.ebook.com.bd
đ āĻāĻĄ় āύিāϰ্āĻŖāϝ়
❏ āĻāĻĄ় = āϰাāĻļি āϏāĻŽāώ্āĻি /āϰাāĻļি āϏংāĻ্āϝা
❏ āϰাāĻļিāϰ āϏāĻŽāώ্āĻি = āĻāĻĄ় ⨉ āϰাāĻļিāϰ āϏংāĻ্āϝা
❏ āϰাāĻļিāϰ āϏংāĻ্āϝা = āϰাāĻļিāϰ āϏāĻŽāώ্āĻি ÷ āĻāĻĄ়
❏ āĻāϝ়েāϰ āĻāĻĄ় = āĻŽোāĻ āĻāϝ়েāϰ āĻĒāϰিāĻŽাāĻŖ / āĻŽোāĻ āϞোāĻেāϰ āϏংāĻ্āϝা
❏ āϏংāĻ্āϝাāϰ āĻāĻĄ় = āϏংāĻ্āϝাāĻুāϞোāϰ āϝোāĻāĻĢāϞ /āϏংāĻ্āϝাāϰ āĻĒāϰিāĻŽাāύ āĻŦা āϏংāĻ্āϝা
❏ āĻ্āϰāĻŽিāĻ āϧাāϰাāϰ āĻāĻĄ় = (āĻļেāώ āĻĒāĻĻ +ā§§āĻŽ āĻĒāĻĻ ) / 2
đ ⧍ āϞāĻ্āώাāϧিāĻ āĻĒ্āϰāĻļ্āύেāϰ āĻĢ্āϰি āĻ ্āϝাāĻĒ.!đāϏাāϰ্āĻ UJS ➺ app.ebook.com.bd
đ āϏুāĻĻāĻāώাāϰ āĻĒāϰিāĻŽাāύ āύিāϰ্āύāϝ়েāϰ āϏূāϤ্āϰাāĻŦāϞী
❏ āϏুāĻĻ = (āϏুāĻĻেāϰ āĻšাāϰ ⨉ āĻāϏāϞ ⨉ āϏāĻŽāϝ়) / ā§§ā§Ļā§Ļ
❏ āϏāĻŽāϝ় = (100 ⨉ āϏুāĻĻ) / (āĻāϏāϞ ⨉ āϏুāĻĻেāϰ āĻšাāϰ)
❏ āϏুāĻĻেāϰ āĻšাāϰ = (100 ⨉ āϏুāĻĻ) / (āĻāϏāϞ ⨉ āϏāĻŽāϝ়)
❏ āĻāϏāϞ = (100 ⨉ āϏুāĻĻ) / (āϏāĻŽāϝ় ⨉ āϏুāĻĻেāϰ āĻšাāϰ)
❏ āĻāϏāϞ = {100 ⨉ (āϏুāĻĻ – āĻŽূāϞ)} / (100+āϏুāĻĻেāϰ āĻšাāϰ ⨉ āϏāĻŽāϝ় )
❏ āϏুāĻĻাāϏāϞ = āĻāϏāϞ + āϏুāĻĻ
❏ āϏুāĻĻাāϏāϞ = āĻāϏāϞ ⨉ (1+ āϏুāĻĻেāϰ āĻšাāϰ) ⨉ āϏāĻŽāϝ় |[āĻāĻ্āϰāĻŦৃāĻĻ্āϧি āϏুāĻĻেāϰ āĻ্āώেāϤ্āϰে]।
đ āĻ āϏংāĻ্āϝ āύিāϤ্āϝ-āύāϤুāύ āĻāĻŽāĻāĻĒ্āϰāĻĻ āĻĢিāĻাāϰ āύিā§ে āĻĒুāϰোāĻĒুāϰি āύāϤুāύ āĻāĻ্āϏāĻĒেāϰিā§েāύ্āϏে UJS āĻ ্āϝাāĻĒেāϰ āϏ্āĻ্āϝাāĻŦāϞ āĻ āϏ্āĻŦā§ংāϏāĻŽ্āĻĒূāϰ্āĻŖ āĻাāϰ্āϏāύ~ā§.ā§.ā§ āϰিāϞিāĻ āĻšā§েāĻে.! āϝা āĻāĻĒāύাāϰ āĻাāĻāϰিāϰ āĻĒ্āϰāϏ্āϤুāϤি āĻļāϤāĻাāĻ āϏāĻŽ্āĻĒূāϰ্āĻŖ āĻāϰাāϰ āĻāύ্āϝ āϝāĻĨেāώ্āĻ। āϏ্āĻŦāϞ্āĻĒ āϏāĻŽā§ে āϏāϰ্āĻŦাāϧিāĻ āĻĒ্āϰāϏ্āϤুāϤিāϰ āĻļ্āϰেāώ্āĻ āϏāĻšাā§āĻ.!
āĻĻুāϰ্āĻĻাāύ্āϤ āĻĢিāĻাāϰāϏāĻŽূāĻš āĻĒেāϤে āĻ ্āϝাāĻĒ āĻāĻĒāĻĄেāĻ āĻāϰুāύ đ āĻĒ্āϞেāϏ্āĻোāϰ āϏাāϰ্āĻ 'UJS' āĻŦা app.ebook.com.bd
đ āϞাāĻ – āĻ্āώāϤিāϰ āĻāĻŦং āĻ্āϰāϝ় – āĻŦিāĻ্āϰāϝ়েāϰ āϏূāϤ্āϰাāĻŦāϞী
❏ āϞাāĻ = āĻŦিāĻ্āϰāϝ়āĻŽূāϞ্āϝ – āĻ্āϰāϝ়āĻŽূāϞ্āϝ
❏ āĻ্āώāϤি = āĻ্āϰāϝ়āĻŽূāϞ্āϝ – āĻŦিāĻ্āϰāϝ়āĻŽূāϞ্āϝ
❏ āĻ্āϰāϝ়āĻŽূāϞ্āϝ = āĻŦিāĻ্āϰāϝ়āĻŽূāϞ্āϝ – āϞাāĻ
❏ āĻ āĻĨāĻŦা
❏ āĻ্āϰāϝ়āĻŽূāϞ্āϝ = āĻŦিāĻ্āϰāϝ়āĻŽূāϞ্āϝ + āĻ্āώāϤি
❏ āĻŦিāĻ্āϰāϝ়āĻŽূāϞ্āϝ = āĻ্āϰāϝ়āĻŽূāϞ্āϝ + āϞাāĻ
❏ āĻ āĻĨāĻŦা
❏ āĻŦিāĻ্āϰāϝ়āĻŽূāϞ্āϝ = āĻ্āϰāϝ়āĻŽূāϞ্āϝ – āĻ্āώāϤি
đ 1 – 100 āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ āϏংāĻ্āϝাāĻŽāύে āϰাāĻাāϰ āϏāĻšāĻ āĻāĻĒাāϝ়ঃ
❏ āĻļāϰ্āĻāĻাāĻ : 4 4 2 2 3 2 2 3 2 1
❏ 1āĻĨেāĻে100āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ āϏংāĻ্āϝা = 25āĻি
❏ 1āĻĨেāĻে10āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ āϏংāĻ্āϝা = 4āĻি 2,3,5,7
❏ 11āĻĨেāĻে20āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ āϏংāĻ্āϝা = 4āĻি 11,13,17,19
❏ 21āĻĨেāĻে30āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ āϏংāĻ্āϝা = 2āĻি 23,29
❏ 31āĻĨেāĻে40āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ āϏংāĻ্āϝা = 2āĻি 31,37
❏ 41āĻĨেāĻে50āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ āϏংāĻ্āϝা = 3āĻি 41,43,47
❏ 51āĻĨেāĻে 60āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ āϏংāĻ্āϝা = 2āĻি 53,59
❏ 61āĻĨেāĻে70āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ āϏংāĻ্āϝা = 2āĻি 61,67
❏ 71āĻĨেāĻে80 āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ āϏংāĻ্āϝা = 3āĻি 71,73,79
❏ 81āĻĨেāĻে 90āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ āϏংāĻ্āϝা = 2āĻি 83,89
❏ 91āĻĨেāĻে100āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ āϏংāĻ্āϝা = 1āĻি 97
đ 1 – 100 āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ āϏংāĻ্āϝা 25 āĻিঃ 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97
❏ 1 – 100āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ āϏংāĻ্āϝাāϰ āϝোāĻāĻĢāϞ 1060
đ āĻোāύ āĻিāĻুāϰ āĻāϤিāĻŦেāĻ
❏ āĻāϤিāĻŦেāĻ = āĻ āϤিāĻ্āϰাāύ্āϤ āĻĻূāϰāϤ্āĻŦ/āϏāĻŽāϝ়
❏ āĻ āϤিāĻ্āϰাāύ্āϤ āĻĻূāϰāϤ্āĻŦ = āĻāϤিāĻŦেāĻ ⨉ āϏāĻŽāϝ়
❏ āϏāĻŽāϝ় = āĻŽোāĻ āĻĻূāϰāϤ্āĻŦ/āĻŦেāĻ
❏ āϏ্āϰোāϤেāϰ āĻ āύুāĻূāϞে āύৌāĻাāϰ āĻাāϰ্āϝāĻāϰী āĻāϤিāĻŦেāĻ = āύৌāĻাāϰ āĻĒ্āϰāĻৃāϤ āĻāϤিāĻŦেāĻ + āϏ্āϰোāϤেāϰ āĻāϤিāĻŦেāĻ।
❏ āϏ্āϰোāϤেāϰ āĻĒ্āϰāϤিāĻূāϞে āύৌāĻাāϰ āĻাāϰ্āϝāĻāϰী āĻāϤিāĻŦেāĻ = āύৌāĻাāϰ āĻĒ্āϰāĻৃāϤ āĻāϤিāĻŦেāĻ – āϏ্āϰোāϤেāϰ āĻāϤিāĻŦেāĻ
đ ⧍ āϞāĻ্āώাāϧিāĻ āĻĒ্āϰāĻļ্āύেāϰ āĻĢ্āϰি āĻ ্āϝাāĻĒ.!đāϏাāϰ্āĻ UJS ➺ app.ebook.com.bd
đ āϏāϰāϞ āϏুāĻĻ
❏ āϝāĻĻি āĻāϏāϞ = P, āϏāĻŽāϝ় = T, āϏুāĻĻেāϰ āĻšাāϰ = R, āϏুāĻĻ – āĻāϏāϞ = c āĻšāϝ়, āϤাāĻšāϞে
❏ āϏুāĻĻেāϰ āĻĒāϰিāĻŽাāĻŖ = PRT/100
❏ āĻāϏāϞ = {100 ⨉ āϏুāĻĻ – āĻāϏāϞ(c)}/(100+TR)
đ āϏāĻŽাāύ্āϤāϰ āϧাāϰাāϰ āĻ্āϰāĻŽিāĻ āϏংāĻ্āϝাāϰ āϝোāĻāĻĢāϞ –
❏ (āϝāĻāύ āϏংāĻ্āϝাāĻি1 āĻĨেāĻে āĻļুāϰু)1+2+3+4+……+n āĻšāϞে āĻāϰূāĻĒ āϧাāϰাāϰ āϏāĻŽāώ্āĻি = [n(n+1)/2]
❏ n = āĻļেāώ āϏংāĻ্āϝা āĻŦা āĻĒāĻĻ āϏংāĻ্āϝা s = āϝোāĻāĻĢāϞ
❏ āϏāĻŽাāύ্āϤāϰ āϧাāϰাāϰ āĻŦāϰ্āĻ āϝোāĻ āĻĒāĻĻ্āϧāϤিāϰ āĻ্āώেāϤ্āϰে(āϝāĻāύ 1² + 2²+ 3² + 4²…….. +n²), – āĻĒ্āϰāĻĨāĻŽ n āĻĒāĻĻেāϰ āĻŦāϰ্āĻেāϰ āϏāĻŽāώ্āĻি S = [n(n+1)2n+1)/6]
❏ āϏāĻŽাāύ্āϤāϰ āϧাāϰাāϰ āĻāύāϝোāĻ āĻĒāĻĻ্āϧāϤিāϰ āĻ্āώেāϤ্āϰে (āϝāĻāύ 1³+2³+3³+………….+n³)– āĻĒ্āϰāĻĨāĻŽ n āĻĒāĻĻেāϰ āĻāύেāϰ āϏāĻŽāώ্āĻি S = [n(n+1)/2] ²
❏ āĻĒāĻĻ āϏংāĻ্āϝা āĻ āĻĒāĻĻ āϏংāĻ্āϝাāϰ āϏāĻŽāώ্āĻি āύিāϰ্āύāϝ়েāϰ āĻ্āώেāϤ্āϰেঃ
❏ āĻĒāĻĻ āϏংāĻ্āϝা N = [(āĻļেāώ āĻĒāĻĻ – āĻĒ্āϰāĻĨāĻŽ āĻĒāĻĻ)/āĻĒ্āϰāϤি āĻĒāĻĻে āĻŦৃāĻĻ্āϧি] +1
❏ n āϤāĻŽ āĻĒāĻĻ = c + (n – 1)d āĻāĻাāύে, n = āĻĒāĻĻāϏংāĻ্āϝা, c = 1āĻŽ āĻĒāĻĻ, d = āϏাāϧাāϰāĻŖ āĻ āύ্āϤāϰ
❏ āϏāĻŽাāύ্āϤāϰ āϧাāϰাāϰ āĻ্āϰāĻŽিāĻ āĻŦিāĻোāĻĄ় āϏংāĻ্āϝাāϰ āϝোāĻāĻĢāϞ – S = M² āĻāĻাāύে,M = āĻŽāϧ্āϝেāĻŽা = (1āĻŽ āϏংāĻ্āϝা+āĻļেāώ āϏংāĻ্āϝা)/2
đ ⧍ āϞāĻ্āώাāϧিāĻ āĻĒ্āϰāĻļ্āύেāϰ āĻĢ্āϰি āĻ ্āϝাāĻĒ.!đāϏাāϰ্āĻ UJS ➺ app.ebook.com.bd
đ āĻŦāϰ্āĻ
❏ (1)² = 1, (11)² = 121, (111)² = 12321, (1111)² = 1234321, (11111)² = 123454321
āύিāϝ়āĻŽ – āϝāϤāĻুāϞো 1 āĻĒাāĻļাāĻĒাāĻļি āύিāϝ়ে āĻŦāϰ্āĻ āĻāϰা āĻšāĻŦে, āĻŦāϰ্āĻ āĻĢāϞে 1 āĻĨেāĻে āĻļুāϰু āĻāϰে āĻĒāϰ āĻĒāϰ āϏেāĻ āϏংāĻ্āϝা āĻĒāϰ্āϝāύ্āϤ āϞিāĻāϤে āĻšāĻŦে āĻāĻŦং āϤাāϰāĻĒāϰ āϏেāĻ āϏংāĻ্āϝাāϰ āĻĒāϰ āĻĨেāĻে āĻ āϧঃāĻ্āϰāĻŽে āĻĒāϰāĻĒāϰ āϏংāĻ্āϝাāĻুāϞো āϞিāĻে 1 āϏংāĻ্āϝাāϝ় āĻļেāώ āĻāϰāϤে āĻšāĻŦে।
❏ (3)² = 9, (33)² = 1089, (333)² = 110889, (3333)² = 11108889, (33333)² = 1111088889
āϝāϤāĻুāϞি 3 āĻĒাāĻļাāĻĒাāĻļি āύিāϝ়ে āĻŦāϰ্āĻ āĻāϰা āĻšāĻŦে, āĻŦāϰ্āĻ āĻĢāϞে āĻāĻāĻেāϰ āĻāϰে 9 āĻāĻŦং 9 āĻāϰ āĻŦাঁāĻĻিāĻে āϤাāϰ āĻেāϝ়ে (āϝāϤāĻুāϞো 3 āĻĨাāĻāĻŦে) āĻāĻāĻি āĻāĻŽ āϏংāĻ্āϝāĻ 8, āϤাāϰ āĻĒāϰ āĻŦাঁāĻĻিāĻে āĻāĻāĻি 0 āĻāĻŦং āĻŦাঁāĻĻিāĻে 8 āĻāϰ āϏāĻŽāϏংāĻ্āϝāĻ 1 āĻŦāϏāĻŦে।
❏ (6)² = 36,(66)² = 4356,(666)² = 443556,(6666)² = 44435556,(66666)² = 4444355556
āϝāϤāĻুāϞি 6 āĻĒাāĻļাāĻĒাāĻļি āύিāϝ়ে āĻŦāϰ্āĻ āĻāϰা āĻšāĻŦে, āĻŦāϰ্āĻ āĻĢāϞে āĻāĻāĻেāϰ āĻāϰে 6 āĻāĻŦং 6 āĻāϰ āĻŦাঁāĻĻিāĻে āϤাāϰ āĻেāϝ়ে (āϝāϤāĻুāϞো 6 āĻĨাāĻāĻŦে) āĻāĻāĻি āĻāĻŽ āϏংāĻ্āϝāĻ 5, āϤাāϰ āĻĒāϰ āĻŦাঁāĻĻিāĻে āĻāĻāĻি 3 āĻāĻŦং āĻŦাঁāĻĻিāĻে 5 āĻāϰ āϏāĻŽāϏংāĻ্āϝāĻ 4 āĻŦāϏāĻŦে।
❏ (9)² = 81,(99)² = 9801,(999)² = 998001,(9999)² = 99980001,(99999)² = 9999800001
āϝāϤāĻুāϞি 9 āĻĒাāĻļাāĻĒাāĻļি āύিāϝ়ে āĻŦāϰ্āĻ āĻāϰা āĻšāĻŦে, āĻŦāϰ্āĻ āĻĢāϞে āĻāĻāĻেāϰ āĻāϰে 1 āĻāĻŦং 1 āĻāϰ āĻŦাঁāĻĻিāĻে āϤাāϰ āĻেāϝ়ে (āϝāϤāĻুāϞো 9 āĻĨাāĻāĻŦে) āĻāĻāĻি āĻāĻŽ āϏংāĻ্āϝāĻ 0, āϤাāϰ āĻĒāϰ āĻŦাঁāĻĻিāĻে āĻāĻāĻি 8 āĻāĻŦং āĻŦাঁāĻĻিāĻে 0 āĻāϰ āϏāĻŽāϏংāĻ্āϝāĻ 9 āĻŦāϏāĻŦে।
đ āĻāύāĻ
❏ Numerology (āϏংāĻ্āϝাāϤāϤ্āϤ্āĻŦ) – Pythagoras(āĻĒিāĻĨাāĻোāϰাāϏ)
❏ Geometry(āĻ্āϝাāĻŽিāϤি) – Euclid(āĻāĻāĻ্āϞিāĻĄ)
❏ calculus(āĻ্āϝাāϞāĻুāϞাāϏ) – Newton(āύিāĻāĻāύ)
❏ MatrixđĨ(āĻŽ্āϝাāĻ্āϰিāĻ্āϏ) – crthur ccyley(āĻ āϰ্āĻĨাāϰ āĻ্āϝাāϞে)
❏ Trigonometry(āϤ্āϰিāĻোāĻŖāĻŽিāϤি)Hippcrchus(āĻšিāĻĒ্āĻĒাāϰāĻাāϏ)
❏ arithmetic(āĻĒাāĻিāĻāĻŖিāϤ) brchmcguptc(āĻŦ্āϰāĻš্āĻŽāĻুāĻĒ্āϤ)
❏ algebra(āĻŦীāĻāĻāĻŖিāϤ) – Muhcmmcd ibn Musc cl – Khwcrizmi(āĻŽোāĻšাāĻŽ্āĻŽāĻĻ āĻŽুāϏা āĻāϞ āĻাāϰিāĻāĻŽী)
❏ Logarithm(āϞāĻাāϰিāĻĻāĻŽ) – John Ncpier(āĻāύ āύেāĻĒিāϝ়াāϰ)
❏ Set theory(āϏেāĻ āϤāϤ্āϤ্āĻŦ) – George ccntor(āĻāϰ্āĻ āĻ্āϝাāύ্āĻāϰ)
❏ Zero(āĻļূāύ্āϝ) – brchmcguptc(āĻŦ্āϰāĻš্āĻŽāĻুāĻĒ্āϤ)
đ ⧍ āϞāĻ্āώাāϧিāĻ āĻĒ্āϰāĻļ্āύেāϰ āĻĢ্āϰি āĻ ্āϝাāĻĒ.!đāϏাāϰ্āĻ UJS ➺ app.ebook.com.bd
đ āĻোāĻĄ় āϏংāĻ্āϝা āĻŦিāĻোāĻĄ় āϏংāĻ্āϝা
❏ āĻোāĻĄ় āϏংāĻ্āϝা + āĻোāĻĄ় āϏংāĻ্āϝা = āĻোāĻĄ় āϏংāĻ্āϝা।
❏ āĻোāĻĄ় āϏংāĻ্āϝা + āĻŦিāĻোāĻĄ় āϏংāĻ্āϝা = āĻŦিāĻোāĻĄ় āϏংāĻ্āϝা।
❏ āĻŦিāĻোāĻĄ় āϏংāĻ্āϝা + āĻŦিāĻোāĻĄ় āϏংāĻ্āϝা = āĻোāĻĄ় āϏংāĻ্āϝা।
❏ āĻোāĻĄ় āϏংāĻ্āϝা ⨉ āĻোāĻĄ় āϏংāĻ্āϝা = āĻোāĻĄ় āϏংāĻ্āϝা।
❏ āĻোāĻĄ় āϏংāĻ্āϝা ⨉ āĻŦিāĻোāĻĄ় āϏংāĻ্āϝা = āĻোāĻĄ় āϏংāĻ্āϝা।
❏ āĻŦিāĻোāĻĄ় āϏংāĻ্āϝা ⨉ āĻŦিāĻোāĻĄ় āϏংāĻ্āϝা = āĻŦিāĻোāĻĄ় āϏংāĻ্āϝা।
đ āĻāύ্āĻাāϰāύেāĻ āĻšāϤে āϏংāĻৃāĻšীāϤ
∽∽∽∽»⏵ujs app «∽∽∽∽
đ āϏāĻŽ্āĻĒূāϰ্āĻŖ āĻ āĻĢāϞাāĻāύে.! ā§Š āϞāĻ্āώাāϧিāĻ āĻĒ্āϰāĻļ্āύেāϰ āϏ্āĻŦā§ংāϏāĻŽ্āĻĒূāϰ্āĻŖ āĻāĻŦ āϏāϞিāĻāĻļāύ āĻ ্āϝাāĻĒ .!
‘đđĨđđĸđĻđđđ đđ¨đ đđ¨đĨđŽđđĸđ¨đ§đŦ ~ đđđ’ App!āĻāĻĒāύাāϰ āϏ্āĻŦāĻĒ্āύāĻĒূāϰāĻŖেāϰ āĻļ্āϰেāώ্āĻ āϏāĻšাā§āĻ.!
▣ āĻāĻŦ āĻŦা āĻāϰ্āϤি āĻĒ্āϰāϏ্āϤুāϤিāϰ āĻāύ্āϝ āĻ āĻšেāϤুāĻ āĻ āύেāĻ āĻŦāĻ āĻিāύে āĻাāĻা āĻ āĻĒāĻā§ āĻāϰাāϰ āĻāĻে...!
▣ āϏ্āϰেāĻĢ āĻāĻāĻু āĻৌāϤূāĻšāϞ āύিā§ে āĻšāϞেāĻ Ultimate Job Solutions (UJS) āĻ ্āϝাāĻĒāĻা āĻ āύ্āϤāϤ āĻāĻāĻŦাāϰ āĻāύ্āϏāĻāϞ āĻāϰে āĻিāĻু āϏāĻŽā§ āĻĻেāĻুāύ! āĻāĻĒāύাāĻে āĻোāύ āĻĒ্āϰāĻাāϰ āϞāĻāĻāύ āĻŦা āĻĒেāĻŽেāύ্āĻ āĻāϰāϤে āĻšāĻŦে āύা āĻাāϏ্āĻ āĻāĻāĻ āĻāϰে āĻĻেāĻুāύ !
▣ ā§Š,ā§Ļā§Ļ,ā§Ļā§Ļā§Ļ+ āĻĒ্āϰāĻļ্āύেāϰ āύিāϰ্āĻāϰāϝোāĻ্āϝ āĻŦ্āϝাāĻ্āϝাāϏāĻš āĻĒ্āϰāĻļ্āύāĻŦ্āϝাংāĻ! āĻāύāϞিāĻŽিāĻেāĻĄ āϏ্āĻŦā§ংāĻ্āϰিā§ āϏুāĻĒāϰিāĻāϞ্āĻĒিāϤ āĻŽāĻĄেāϞ āĻেāϏ্āĻ, ā§Šā§Ļā§Ļ+ āĻāĻŦ āĻāĻŦুāĻ, āϞেāĻāĻাāϰ āύোāĻ āϏāĻŽ্āĻŦāϞিāϤ, āϏāĻāϞ āĻাāĻāϰিāϰ āύিā§োāĻ āĻĒāϰীāĻ্āώাāϰ āϏāϰ্āĻŦোāĻ্āĻ āĻ āĻĒāϰিāĻĒূāϰ্āĻŖ āĻĒ্āϰāϏ্āϤুāϤিāϰ āϏ্āĻŽাāϰ্āĻ AI āĻĒ্āϰāϝুāĻ্āϤিāϰ āĻāĻŽāĻĒ্āϞিāĻ āĻāĻŦ āϏāϞিāĻāĻļāύ āĻ ্āϝাāĻĒ...
Comments