Formula math

 āĻ—āĻŖিāϤেāϰ ⧍ā§Ļā§Ļ⁺ āϏূāϤ্āϰ āĻ“ āĻļāϰ্āϟāĻ•াāϟ āϟেāĻ•āύিāĻ• ➺ āχāωāύিāĻ•োāĻĄ āĻŽ্āϝাāĻĨ āĻ•্āϝাāϰেāĻ•্āϟাāϰে āĻ•āϰা āϤাāχ āϏāĻŦāĻ–াāύে āϏাāĻĒোāϰ্āϟ āĻ•āϰāĻŦে 

❏ (𝑎+𝑏)² = 𝑎²+𝑏²+2𝑎𝑏 | = (𝑎 – 𝑏)²+4𝑎𝑏

❏ 𝑎² + 𝑏² = (𝑎+𝑏)² – 2𝑎𝑏 | = (𝑎 – 𝑏)²+2𝑎𝑏.

❏ đ‘Ĩ + ⅟đ‘Ĩ = 𝑛 ➺ đ‘Ĩ² + ⅟đ‘Ĩ² = 𝑛² – 2 | đ‘Ĩ³ + ⅟đ‘Ĩ³ = 𝑛³ – 3𝑛

❏ đ‘Ĩ – ⅟đ‘Ĩ = 𝑛 ➺ đ‘Ĩ² + ⅟đ‘Ĩ² = 𝑛²+2 | đ‘Ĩ³ + ⅟đ‘Ĩ³ = 𝑛³+ 3𝑛

❏ (𝑎 – 𝑏)² = 𝑎² – 2𝑎𝑏+𝑏² | = (𝑎+𝑏)² – 4𝑎𝑏

❏ 𝑎² – 𝑏² = (𝑎 +𝑏)(𝑎  – 𝑏)

❏ 2(𝑎²+𝑏²) = (𝑎+𝑏)²+(𝑎 – 𝑏)²

❏ 4𝑎𝑏 = (𝑎+𝑏)² – (𝑎 – 𝑏)²

❏ 𝑎𝑏 = {(𝑎+𝑏)/2}² – {(𝑎 – 𝑏)/2}²

📚 ⧍ āϞāĻ•্āώাāϧিāĻ• āĻĒ্āϰāĻļ্āύেāϰ āϏ্āĻŦ⧟ংāϏāĻŽ্āĻĒূāϰ্āĻŖ āϜāĻŦ āϏāϞিāωāĻļāύ āĻĢ্āϰি āĻ…্āϝাāĻĒ.!🔎āϏাāϰ্āϚ UJS ➺ app.ebook.com.bd

❏ (𝑎+𝑏+𝑐)² = 𝑎²+𝑏²+𝑐²+2(𝑎𝑏+𝑏𝑐+𝑐𝑎)

❏ (𝑎+𝑏)³ = 𝑎³+3𝑎²đ‘+3𝑎𝑏²+𝑏³

❏ (𝑎+𝑏)³ = 𝑎³+𝑏³+3𝑎𝑏(𝑎+𝑏)

❏ 𝑎 – 𝑏)³ = 𝑎³ – 3𝑎²đ‘+3𝑎𝑏² – 𝑏³

❏ (𝑎 – 𝑏)³ = 𝑎³ – 𝑏³ – 3𝑎𝑏(𝑎 – 𝑏)

❏ 𝑎³+𝑏³ = (𝑎+𝑏) (𝑎² – 𝑎𝑏+𝑏²)

❏ 𝑎³+𝑏³ = (𝑎+𝑏)³ – 3𝑎𝑏(𝑎+𝑏)

❏ 𝑎³ – 𝑏³ = (𝑎 – 𝑏) (𝑎²+𝑎𝑏+𝑏²)

❏ 𝑎³ – 𝑏³ = (𝑎 – 𝑏)³+3𝑎𝑏(𝑎 – 𝑏)

📚 ⧍ āϞāĻ•্āώাāϧিāĻ• āĻĒ্āϰāĻļ্āύেāϰ āĻĢ্āϰি āĻ…্āϝাāĻĒ.!🔎āϏাāϰ্āϚ UJS ➺ app.ebook.com.bd

❏ (𝑎² + 𝑏² + 𝑐²) = (𝑎 + 𝑏 + 𝑐)² – 2(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎)

❏ 2 (𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) = (𝑎 + 𝑏 + 𝑐)² – (𝑎² + 𝑏² + 𝑐²)

❏ (𝑎 + 𝑏 + 𝑐)³ = 𝑎³ + 𝑏³ + 𝑐³ + 3 (𝑎 + 𝑏) (𝑏 + 𝑐) (𝑐 + 𝑎)

❏ 𝑎³ + 𝑏³ + 𝑐³ – 3𝑎𝑏𝑐 = (𝑎+𝑏+𝑐)(𝑎² + 𝑏²+ 𝑐²–𝑎𝑏–𝑏𝑐– 𝑐𝑎)

❏ 𝑎3 + 𝑏3 + 𝑐3 – 3𝑎𝑏𝑐 = ½ (𝑎+𝑏+𝑐) { (𝑎–𝑏)²+(𝑏–𝑐)²+(𝑐–𝑎)²}

❏ (đ‘Ĩ + 𝑎) (đ‘Ĩ + 𝑏) = đ‘Ĩ² + (𝑎 + 𝑏) đ‘Ĩ + 𝑎𝑏

❏ (đ‘Ĩ + 𝑎) (đ‘Ĩ – 𝑏) = đ‘Ĩ² + (𝑎 – 𝑏) đ‘Ĩ – 𝑎𝑏

❏ (đ‘Ĩ – 𝑎) (đ‘Ĩ + 𝑏) = đ‘Ĩ² + (𝑏 – 𝑎) đ‘Ĩ – 𝑎𝑏

❏ (đ‘Ĩ – 𝑎) (đ‘Ĩ – 𝑏) = đ‘Ĩ² – (𝑎 + 𝑏) đ‘Ĩ + 𝑎𝑏

📚 ⧍ āϞāĻ•্āώাāϧিāĻ• āĻĒ্āϰāĻļ্āύেāϰ āϏ্āĻŦ⧟ংāϏāĻŽ্āĻĒূāϰ্āĻŖ āϜāĻŦ āϏāϞিāωāĻļāύ āĻĢ্āϰি āĻ…্āϝাāĻĒ.!🔎āϏাāϰ্āϚ UJS ➺ app.ebook.com.bd

❏ (đ‘Ĩ+p) (đ‘Ĩ+q) (đ‘Ĩ+r) = đ‘Ĩ³ + (p+q+r) đ‘Ĩ² + (pq+qr+rp) đ‘Ĩ +pqr

❏ 𝑏𝑐 (𝑏 – 𝑐) + 𝑐𝑎(𝑐 – 𝑎) + 𝑎𝑏(𝑎 – 𝑏) = – (𝑏 – 𝑐) (𝑐 – 𝑎) (𝑎 – 𝑏)

❏ 𝑎² (𝑏 – 𝑐) + 𝑏²(𝑐 – 𝑎) + 𝑐²(𝑎 – 𝑏) =  – (𝑏 – 𝑐) (𝑐 – 𝑎) (𝑎 – 𝑏)

❏ 𝑎 (𝑏² – 𝑐²) + 𝑏(𝑐² – 𝑎²) + 𝑐(𝑎² – 𝑏²) = (𝑏 – 𝑐) (𝑐 – 𝑎) (𝑎 – 𝑏)

❏ 𝑎³ (𝑏 – 𝑐) + 𝑏³ (𝑐 – 𝑎) +𝑐³ (𝑎  – 𝑏) =  – (𝑏 – 𝑐) (𝑐 – 𝑎) (𝑎 – 𝑏)(𝑎 + 𝑏 + 𝑐)

❏ 𝑏² – 𝑐²(𝑏² – 𝑐²) + 𝑐²đ‘޲(𝑐² – 𝑎²)+𝑎²đ‘²(𝑎² – 𝑏²) =  – (𝑏 – 𝑐) (𝑐 – 𝑎) (𝑎 – 𝑏) (𝑏+𝑐) (𝑐+𝑎) (𝑎+𝑏)

❏ (𝑎𝑏 + 𝑏𝑐+𝑐𝑎) (𝑎+𝑏+𝑐) – 𝑎𝑏𝑐 = (𝑎 + 𝑏)(𝑏 + 𝑐) (𝑐+𝑎)

❏ (𝑏 + 𝑐)(𝑐 + 𝑎)(𝑎 + 𝑏) + 𝑎𝑏𝑐 = (𝑎 + 𝑏 +𝑐) (𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎)

🎁 āĻ…āϏংāĻ–্āϝ āύিāϤ্āϝ-āύāϤুāύ āϚāĻŽāĻ•āĻĒ্āϰāĻĻ āĻĢিāϚাāϰ āύি⧟ে āĻĒুāϰোāĻĒুāϰি āύāϤুāύ āĻāĻ•্āϏāĻĒেāϰি⧟েāύ্āϏে UJS āĻ…্āϝাāĻĒেāϰ āϏ্āϟ্āϝাāĻŦāϞ āĻ“ āϏ্āĻŦ⧟ংāϏāĻŽ্āĻĒূāϰ্āĻŖ āĻ­াāϰ্āϏāύ~ā§­.ā§­.ā§­ āϰিāϞিāϜ āĻšā§ŸেāĻ›ে.! āϝা āφāĻĒāύাāϰ āϚাāĻ•āϰিāϰ āĻĒ্āϰāϏ্āϤুāϤি āĻļāϤāĻ­াāĻ— āϏāĻŽ্āĻĒূāϰ্āĻŖ āĻ•āϰাāϰ āϜāύ্āϝ āϝāĻĨেāώ্āϟ। āϏ্āĻŦāϞ্āĻĒ āϏāĻŽā§Ÿে āϏāϰ্āĻŦাāϧিāĻ• āĻĒ্āϰāϏ্āϤুāϤিāϰ āĻļ্āϰেāώ্āĻ  āϏāĻšা⧟āĻ•.!

āĻĻুāϰ্āĻĻাāύ্āϤ āĻĢিāϚাāϰāϏāĻŽূāĻš āĻĒেāϤে āĻ…্āϝাāĻĒ āφāĻĒāĻĄেāϟ āĻ•āϰুāύ 🔎 āĻĒ্āϞেāϏ্āϟোāϰ āϏাāϰ্āϚ 'UJS' āĻŦা app.ebook.com.bd

📖 āφāϝ়āϤāĻ•্āώেāϤ্āϰ

❏ āφāϝ়āϤāĻ•্āώেāϤ্āϰেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = (āĻĻৈāϰ্āϘ্āϝ ⨉ āĻĒ্āϰāϏ্āĻĨ) āĻŦāϰ্āĻ— āĻāĻ•āĻ•

❏ āφāϝ়āϤāĻ•্āώেāϤ্āϰেāϰ āĻĒāϰিāϏীāĻŽা = 2 (āĻĻৈāϰ্āϘ্āϝ+āĻĒ্āϰāϏ্āĻĨ) āĻāĻ•āĻ•

❏ āφāϝ়āϤāĻ•্āώেāϤ্āϰেāϰ āĻ•āϰ্āĻŖ = √(āĻĻৈāϰ্āϘ্āϝ²+āĻĒ্āϰāϏ্āĻĨ²) āĻāĻ•āĻ•

❏ āφāϝ়āϤāĻ•্āώেāϤ্āϰেāϰ āĻĻৈāϰ্āϘ্āϝ = āĻ•্āώেāϤ্āϰāĻĢāϞ÷āĻĒ্āϰāϏ্āϤ āĻāĻ•āĻ•

❏ āφāϝ়āϤāĻ•্āώেāϤ্āϰেāϰ āĻĒ্āϰāϏ্āϤ = āĻ•্āώেāϤ্āϰāĻĢāϞ÷āĻĻৈāϰ্āϘ্āϝ āĻāĻ•āĻ•

📚 ⧍ āϞāĻ•্āώাāϧিāĻ• āĻĒ্āϰāĻļ্āύেāϰ āϏ্āĻŦ⧟ংāϏāĻŽ্āĻĒূāϰ্āĻŖ āϜāĻŦ āϏāϞিāωāĻļāύ āĻĢ্āϰি āĻ…্āϝাāĻĒ.!🔎āϏাāϰ্āϚ UJS ➺ app.ebook.com.bd

📖 āĻŦāϰ্āĻ—āĻ•্āώেāϤ্āϰ

❏ āĻŦāϰ্āĻ—āĻ•্āώেāϤ্āϰেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = (āϝে āĻ•োāύ āĻāĻ•āϟি āĻŦাāĻšুāϰ āĻĻৈāϰ্āϘ্āϝ)² āĻŦāϰ্āĻ— āĻāĻ•āĻ•

❏ āĻŦāϰ্āĻ—āĻ•্āώেāϤ্āϰেāϰ āĻĒāϰিāϏীāĻŽা = 4 ⨉ āĻāĻ• āĻŦাāĻšুāϰ āĻĻৈāϰ্āϘ্āϝ āĻāĻ•āĻ•

❏ āĻŦāϰ্āĻ—āĻ•্āώেāϤ্āϰেāϰ āĻ•āϰ্āĻŖ = √2 ⨉ āĻāĻ• āĻŦাāĻšুāϰ āĻĻৈāϰ্āϘ্āϝ āĻāĻ•āĻ•

❏ āĻŦāϰ্āĻ—āĻ•্āώেāϤ্āϰেāϰ āĻŦাāĻšু = √āĻ•্āώেāϤ্āϰāĻĢāϞ āĻŦা āĻĒāϰিāϏীāĻŽা/4 āĻāĻ•āĻ•


📖 āϤ্āϰিāĻ­ূāϜ

❏ āϏāĻŽāĻŦাāĻšু āϤ্āϰিāĻ­ূāϜেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = √¾ ⨉ (āĻŦাāĻšু)²

❏ āϏāĻŽāĻŦাāĻšু āϤ্āϰিāĻ­ূāϜেāϰ āωāϚ্āϚāϤা = √3/2 ⨉ (āĻŦাāĻšু)

❏ āĻŦিāώāĻŽāĻŦাāĻšু āϤ্āϰিāĻ­ুāϜেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = √s(s – 𝑎) (s – 𝑏) (s – 𝑐) ◈āĻāĻ–াāύে 𝑎, 𝑏, 𝑐 āϤ্āϰিāĻ­ুāϜেāϰ āϤিāύāϟি āĻŦাāĻšুāϰ āĻĻৈāϰ্āϘ্āϝ, s = āĻ…āϰ্āϧāĻĒāϰিāϏীāĻŽা◈āĻĒāϰিāϏীāĻŽা 2s = (𝑎+𝑏+𝑐)

❏ āϏাāϧাāϰāĻŖ āϤ্āϰিāĻ­ূāϜেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = ½ (āĻ­ূāĻŽি ⨉ āωāϚ্āϚāϤা) āĻŦāϰ্āĻ— āĻāĻ•āĻ•

❏ āϏāĻŽāĻ•োāĻŖী āϤ্āϰিāĻ­ূāϜেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = ½(𝑎 ⨉ 𝑏) ◈āĻāĻ–াāύে āϤ্āϰিāĻ­ুāϜেāϰ āϏāĻŽāĻ•োāĻŖ āϏংāϞāĻ—্āύ āĻŦাāĻšুāĻĻ্āĻŦāϝ় 𝑎 āĻāĻŦং 𝑏.

❏ āϏāĻŽāĻĻ্āĻŦিāĻŦাāĻšু āϤ্āϰিāĻ­ূāϜেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = 2√4 𝑏² – 𝑎²/4 āĻāĻ–াāύে, 𝑎 = āĻ­ূāĻŽি; 𝑏 = āĻ…āĻĒāϰ āĻŦাāĻšু।

❏ āϤ্āϰিāĻ­ুāϜেāϰ āωāϚ্āϚāϤা = 2 ⨉ (āĻ•্āώেāϤ্āϰāĻĢāϞ/āĻ­ূāĻŽি)

❏ āϏāĻŽāĻ•োāĻŖী āϤ্āϰিāĻ­ুāϜেāϰ āĻ…āϤিāĻ­ুāϜ = √ āϞāĻŽ্āĻŦ²+āĻ­ূāĻŽি²

❏ āϞāĻŽ্āĻŦ = √āĻ…āϤিāĻ­ূāϜ² – āĻ­ূāĻŽি²

❏ āĻ­ূāĻŽি = √āĻ…āϤিāĻ­ূāϜ² – āϞāĻŽ্āĻŦ²

❏ āϏāĻŽāĻĻ্āĻŦিāĻŦাāĻšু āϤ্āϰিāĻ­ুāϜেāϰ āωāϚ্āϚāϤা = √𝑏² – 𝑎²/4 ◈āĻāĻ–াāύে 𝑎 = āĻ­ূāĻŽি; 𝑏 = āϏāĻŽাāύ āĻĻুāχ āĻŦাāĻšুāϰ āĻĻৈāϰ্āϘ্āϝ।

❏ āϤ্āϰিāĻ­ুāϜেāϰ āĻĒāϰিāϏীāĻŽা = āϤিāύ āĻŦাāĻšুāϰ āϏāĻŽāώ্āϟি 

📚 ⧍ āϞāĻ•্āώাāϧিāĻ• āĻĒ্āϰāĻļ্āύেāϰ āĻĢ্āϰি āĻ…্āϝাāĻĒ.!🔎āϏাāϰ্āϚ UJS ➺ app.ebook.com.bd

📖 āϰāĻŽ্āĻŦāϏ

❏ āϰāĻŽ্āĻŦāϏেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = ½ ⨉ (āĻ•āϰ্āĻŖāĻĻুāχāϟিāϰ āĻ—ুāĻŖāĻĢāϞ)

❏ āϰāĻŽ্āĻŦāϏেāϰ āĻĒāϰিāϏীāĻŽা = 4 ⨉ āĻāĻ• āĻŦাāĻšুāϰ āĻĻৈāϰ্āϘ্āϝ


📖 āϏাāĻŽাāύ্āϤāϰিāĻ•

❏ āϏাāĻŽাāύ্āϤāϰিāĻ•েāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = āĻ­ূāĻŽি ⨉ āωāϚ্āϚāϤা = 

❏ āϏাāĻŽাāύ্āϤāϰিāĻ•েāϰ āĻĒāϰিāϏীāĻŽা = 2 ⨉ (āϏāύ্āύিāĻšিāϤ āĻŦাāĻšুāĻĻ্āĻŦāϝ়েāϰ āϏāĻŽāώ্āϟি)


📖 āϟ্āϰাāĻĒিāϜিāϝ়াāĻŽ

❏ āϟ্āϰাāĻĒিāϜিāϝ়াāĻŽেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = ½ ⨉ (āϏāĻŽাāύ্āϤāϰাāϞ āĻŦাāĻšু āĻĻুāχāϟিāϰ āϝোāĻ—āĻĢāϞ) ⨉ āωāϚ্āϚāϤা

📚 ⧍ āϞāĻ•্āώাāϧিāĻ• āĻĒ্āϰāĻļ্āύেāϰ āϏ্āĻŦ⧟ংāϏāĻŽ্āĻĒূāϰ্āĻŖ āϜāĻŦ āϏāϞিāωāĻļāύ āĻĢ্āϰি āĻ…্āϝাāĻĒ.!🔎āϏাāϰ্āϚ UJS ➺ app.ebook.com.bd

📖 āϘāύāĻ•

❏ āϘāύāĻ•েāϰ āϘāύāĻĢāϞ = (āϝেāĻ•োāύ āĻŦাāĻšু)³ āϘāύ āĻāĻ•āĻ•

❏ āϘāύāĻ•েāϰ āϏāĻŽāĻ—্āϰāϤāϞেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = 6 ⨉ āĻŦাāĻšু² āĻŦāϰ্āĻ— āĻāĻ•āĻ•

❏ āϘāύāĻ•েāϰ āĻ•āϰ্āĻŖ = √3 ⨉ āĻŦাāĻšু āĻāĻ•āĻ•


📖 āφāϝ়āϤāϘāύāĻ•

❏ āφāϝ়āϤāϘāύāĻ•েāϰ āϘāύāĻĢāϞ = (āĻĻৈā§°্āϘা ⨉ āĻĒ্āϰāϏ্āϤ ⨉ āωāϚ্āϚāϤা) āϘāύ āĻāĻ•āĻ•

❏ āφāϝ়āϤāϘāύāĻ•েāϰ āϏāĻŽāĻ—্āϰāϤāϞেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = 2(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) āĻŦāϰ্āĻ— āĻāĻ•āĻ• [ āϝেāĻ–াāύে 𝑎 = āĻĻৈāϰ্āϘ্āϝ 𝑏 = āĻĒ্āϰāϏ্āϤ 𝑐 = āωāϚ্āϚāϤা ]

❏ āφāϝ়āϤāϘāύāĻ•েāϰ āĻ•āϰ্āĻŖ = √𝑎²+𝑏²+𝑐² āĻāĻ•āĻ•

❏ āϚাāϰি āĻĻেāĻ“āϝ়াāϞেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = 2 (āĻĻৈāϰ্āϘ্āϝ + āĻĒ্āϰāϏ্āĻĨ) ⨉ āωāϚ্āϚāϤা

🎁 āĻ…āϏংāĻ–্āϝ āύিāϤ্āϝ-āύāϤুāύ āϚāĻŽāĻ•āĻĒ্āϰāĻĻ āĻĢিāϚাāϰ āύি⧟ে āĻĒুāϰোāĻĒুāϰি āύāϤুāύ āĻāĻ•্āϏāĻĒেāϰি⧟েāύ্āϏে UJS āĻ…্āϝাāĻĒেāϰ āϏ্āϟ্āϝাāĻŦāϞ āĻ“ āϏ্āĻŦ⧟ংāϏāĻŽ্āĻĒূāϰ্āĻŖ āĻ­াāϰ্āϏāύ~ā§­.ā§­.ā§­ āϰিāϞিāϜ āĻšā§ŸেāĻ›ে.! āϝা āφāĻĒāύাāϰ āϚাāĻ•āϰিāϰ āĻĒ্āϰāϏ্āϤুāϤি āĻļāϤāĻ­াāĻ— āϏāĻŽ্āĻĒূāϰ্āĻŖ āĻ•āϰাāϰ āϜāύ্āϝ āϝāĻĨেāώ্āϟ। āϏ্āĻŦāϞ্āĻĒ āϏāĻŽā§Ÿে āϏāϰ্āĻŦাāϧিāĻ• āĻĒ্āϰāϏ্āϤুāϤিāϰ āĻļ্āϰেāώ্āĻ  āϏāĻšা⧟āĻ•.!

āĻĻুāϰ্āĻĻাāύ্āϤ āĻĢিāϚাāϰāϏāĻŽূāĻš āĻĒেāϤে āĻ…্āϝাāĻĒ āφāĻĒāĻĄেāϟ āĻ•āϰুāύ 🔎 āĻĒ্āϞেāϏ্āϟোāϰ āϏাāϰ্āϚ 'UJS' āĻŦা app.ebook.com.bd

📖 āĻŦৃāϤ্āϤ 

❏ āĻŦৃāϤ্āϤেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = Ī€r² = 22/7 ⨉ r² {āĻāĻ–াāύে Ī€ = āϧ্āϰুāĻŦāĻ• 22/7, āĻŦৃāϤ্āϤেāϰ āĻŦ্āϝাāϏাāϰ্āϧ = r}

❏ āĻŦৃāϤ্āϤেāϰ āĻĒāϰিāϧি = 2Ī€r

❏ āĻ—োāϞāĻ•েāϰ āĻĒৃāώ্āĻ āϤāϞেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = 4Ī€r² āĻŦāϰ্āĻ— āĻāĻ•āĻ•

❏ āĻ—োāϞāĻ•েāϰ āφāϝ়āϤāύ = 4Ī€r³/3 āϘāύ āĻāĻ•āĻ•

❏ h āωāϚ্āϚāϤাāϝ় āϤāϞāϚ্āϚেāĻĻে āĻ‰ā§ŽāĻĒāύ্āύ āĻŦৃāϤ্āϤেāϰ āĻŦ্āϝাāϏাāϰ্āϧ = √( r² – h²) āĻāĻ•āĻ•

❏ āĻŦৃāϤ্āϤāϚাāĻĒেāϰ āĻĻৈāϰ্āϘ্āϝ s = Ī€rθ/180° ,◈āĻāĻ–াāύে θ = āĻ•োāĻŖ


📖 āϏāĻŽāĻŦৃāϤ্āϤāĻ­ূāĻŽিāĻ• āϏিāϞিāύ্āĻĄাāϰ / āĻŦেāϞāύ

◈āϏāĻŽāĻŦৃāϤ্āϤāĻ­ূāĻŽিāĻ• āϏিāϞিāύ্āĻĄাāϰেāϰ āĻ­ূāĻŽিāϰ āĻŦ্āϝাāϏাāϰ্āϧ r āĻāĻŦং āωāϚ্āϚāϤা h āφāϰ āĻšেāϞাāύো āϤāϞেāϰ āωāϚ্āϚāϤা l āĻšāϞে,

❏ āϏিāϞিāύ্āĻĄাāϰেāϰ āφāϝ়āϤāύ = Ī€r²h

❏ āϏিāϞিāύ্āĻĄাāϰেāϰ āĻŦāĻ•্āϰāϤāϞেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ (āϏিāĻāϏāĻ) = 2Ī€rh।

❏ āϏিāϞিāύ্āĻĄাāϰেāϰ āĻĒৃāώ্āĻ āϤāϞেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ (āϟিāĻāϏāĻ) = 2Ī€r (h + r)

📚 ⧍ āϞāĻ•্āώাāϧিāĻ• āĻĒ্āϰāĻļ্āύেāϰ āϏ্āĻŦ⧟ংāϏāĻŽ্āĻĒূāϰ্āĻŖ āϜāĻŦ āϏāϞিāωāĻļāύ āĻĢ্āϰি āĻ…্āϝাāĻĒ.!🔎āϏাāϰ্āϚ UJS ➺ app.ebook.com.bd

📖 āϏāĻŽāĻŦৃāϤ্āϤāĻ­ূāĻŽিāĻ• āĻ•োāĻŖāĻ•

◈āϏāĻŽāĻŦৃāϤ্āϤāĻ­ূāĻŽিāĻ• āĻ­ূāĻŽিāϰ āĻŦ্āϝাāϏাāϰ্āϧ r āĻāĻŦং āωāϚ্āϚāϤা h āφāϰ āĻšেāϞাāύো āϤāϞেāϰ āωāϚ্āϚāϤা l āĻšāϞে,

❏ āĻ•োāĻŖāĻ•েāϰ āĻŦāĻ•্āϰāϤāϞেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = Ī€rl āĻŦāϰ্āĻ— āĻāĻ•āĻ•

❏ āĻ•োāĻŖāĻ•েāϰ āϏāĻŽāϤāϞেāϰ āĻ•্āώেāϤ্āϰāĻĢāϞ = Ī€r(r+l) āĻŦāϰ্āĻ— āĻāĻ•āĻ•

❏ āĻ•োāĻŖāĻ•েāϰ āφāϝ়āϤāύ = ⅓Ī€r²h āϘāύ āĻāĻ•āĻ•


📖 āĻŦāĻšুāĻ­ুāϜ

❏ āĻŦāĻšুāĻ­ুāϜেāϰ āĻ•āϰ্āĻŖেāϰ āϏংāĻ–্āϝা = n(n – 3)/2

❏ āĻŦāĻšুāĻ­ুāϜেāϰ āĻ•োāĻŖāĻ—ুāϞিāϰ āϏāĻŽāώ্āϟি = (2n – 4)āϏāĻŽāĻ•োāĻŖ ◈āĻāĻ–াāύে n = āĻŦাāĻšুāϰ āϏংāĻ–্āϝা

❏ āϚāϤুāϰ্āĻ­ুāϜেāϰ āĻĒāϰিāϏীāĻŽা = āϚাāϰ āĻŦাāĻšুāϰ āϏāĻŽāώ্āϟি


📖 āϤ্āϰিāĻ•োāĻŖāĻŽিāϤিāϰ āϏূāϤ্āϰাāĻŦāϞীঃ

❏ sinθ = āϞāĻŽ্āĻŦ / āĻ…āϤিāĻ­ূāϜ [ āϏা āϞ āĻ…āϤি] 

❏ cosθ = āĻ­ূāĻŽি / āĻ…āϤিāĻ­ূāϜ [ āĻ• āĻ­ূ āĻ…āϤি] 

❏ taneθ = āϞāĻŽ্āĻŦ / āĻ­ূāĻŽি [ āϟে  āϞ āĻ­ূ ]    

❏ cotθ = āĻ­ূāĻŽি / āϞāĻŽ্āĻŦ

❏ secθ = āĻ…āϤিāĻ­ূāϜ / āĻ­ূāĻŽি

❏ cosecθ = āĻ…āϤিāĻ­ূāϜ / āϞāĻŽ্āĻŦ

📚 ⧍ āϞāĻ•্āώাāϧিāĻ• āĻĒ্āϰāĻļ্āύেāϰ āĻĢ্āϰি āĻ…্āϝাāĻĒ.!🔎āϏাāϰ্āϚ UJS ➺ app.ebook.com.bd

❏ sinθ = 1/cosecθ | cosecθ = 1/sinθ

❏ cosθ = 1/secθ    |  secθ = 1/cosθ

❏ tanθ = 1/cotθ    |  cotθ = 1/tanθ


❏ sin²Î¸ + cos²Î¸ = 1

❏ sin²Î¸ = 1 – cos²Î¸

❏ cos²Î¸ = 1 – sin²Î¸

❏ sec²Î¸ – tcn²Î¸ = 1

❏ sec²Î¸ = 1+ tcn²Î¸

❏ tcn²Î¸ = sec²Î¸ – 1

❏ cosec²Î¸ – cot²Î¸ = 1

❏ cosec²Î¸ = cot²Î¸ + 1

❏ cot²Î¸ = cosec²Î¸ – 1

📚 ⧍ āϞāĻ•্āώাāϧিāĻ• āĻĒ্āϰāĻļ্āύেāϰ āĻĢ্āϰি āĻ…্āϝাāĻĒ.!🔎āϏাāϰ্āϚ UJS ➺ app.ebook.com.bd


📖 āĻŦিāϝ়োāĻ—েāϰ āϏূāϤ্āϰাāĻŦāϞি

❏ āĻŦিāϝ়োāϜāύ – āĻŦিāϝ়োāϜ্āϝ = āĻŦিāϝ়োāĻ—āĻĢāϞ।

❏ āĻŦিāϝ়োāϜāύ = āĻŦিāϝ়োāĻ—āĻĢ + āĻŦিāϝ়োāϜ্āϝ

❏ āĻŦিāϝ়োāϜ্āϝ = āĻŦিāϝ়োāϜāύ – āĻŦিāϝ়োāĻ—āĻĢāϞ


📖 āĻ—ুāĻŖেāϰ āϏূāϤ্āϰাāĻŦāϞি

❏ āĻ—ুāĻŖāĻĢāϞ = āĻ—ুāĻŖ্āϝ ⨉ āĻ—ুāĻŖāĻ•

❏ āĻ—ুāĻŖāĻ• = āĻ—ুāĻŖāĻĢāϞ ÷ āĻ—ুāĻŖ্āϝ

❏ āĻ—ুāĻŖ্āϝ = āĻ—ুāĻŖāĻĢāϞ ÷ āĻ—ুāĻŖāĻ•


📖 āĻ­াāĻ—েāϰ āϏূāϤ্āϰাāĻŦāϞি

āύিঃāĻļেāώে āĻŦিāĻ­াāϜ্āϝ āύা āĻšāϞে

❏ āĻ­াāϜ্āϝ = āĻ­াāϜāĻ• ⨉ āĻ­াāĻ—āĻĢāϞ + āĻ­াāĻ—āĻļেāώ।

❏ āĻ­াāϜ্āϝ = (āĻ­াāϜ্āϝ – āĻ­াāĻ—āĻļেāώ) ÷ āĻ­াāĻ—āĻĢāϞ।

❏ āĻ­াāĻ—āĻĢāϞ = (āĻ­াāϜ্āϝ  – āĻ­াāĻ—āĻļেāώ)÷ āĻ­াāϜāĻ•।


āύিঃāĻļেāώে āĻŦিāĻ­াāϜ্āϝ āĻšāϞে।

❏ āĻ­াāϜāĻ• = āĻ­াāϜ্āϝ÷ āĻ­াāĻ—āĻĢāϞ।

❏ āĻ­াāĻ—āĻĢāϞ = āĻ­াāϜ্āϝ ÷ āĻ­াāϜāĻ•।

❏ āĻ­াāϜ্āϝ = āĻ­াāϜāĻ• ⨉ āĻ­াāĻ—āĻĢāϞ।


📖 āĻ­āĻ—্āύাংāĻļেāϰ āϞ.āϏা.āĻ—ু āĻ“ āĻ—.āϏা.āĻ—ু āϏূāϤ্āϰাāĻŦāϞী 

❏ āĻ­āĻ—্āύাংāĻļেāϰ āĻ—.āϏা.āĻ—ু = āϞāĻŦāĻ—ুāϞোāϰ āĻ—.āϏা.āĻ—ু / āĻšāϰāĻ—ুāϞোāϰ āϞ.āϏা.āĻ—ু

❏ āĻ­āĻ—্āύাংāĻļেāϰ āϞ.āϏা.āĻ—ু = āϞāĻŦāĻ—ুāϞোāϰ āϞ.āϏা.āĻ—ু / āĻšāϰāĻ—ুāϞাāϰ āĻ—.āϏা.āĻ—ু

❏ āĻ­āĻ—্āύাংāĻļāĻĻ্āĻŦāϝ়েāϰ āĻ—ুāĻŖāĻĢāϞ = āĻ­āĻ—্āύাংāĻļāĻĻ্āĻŦāϝ়েāϰ āϞ.āϏা.āĻ—ু ⨉ āĻ­āĻ—্āύাংāĻļāĻĻ্āĻŦāϝ়েāϰ āĻ—.āϏা.āĻ—ু.

🎁 āĻ…āϏংāĻ–্āϝ āύিāϤ্āϝ-āύāϤুāύ āϚāĻŽāĻ•āĻĒ্āϰāĻĻ āĻĢিāϚাāϰ āύি⧟ে āĻĒুāϰোāĻĒুāϰি āύāϤুāύ āĻāĻ•্āϏāĻĒেāϰি⧟েāύ্āϏে UJS āĻ…্āϝাāĻĒেāϰ āϏ্āϟ্āϝাāĻŦāϞ āĻ“ āϏ্āĻŦ⧟ংāϏāĻŽ্āĻĒূāϰ্āĻŖ āĻ­াāϰ্āϏāύ~ā§­.ā§­.ā§­ āϰিāϞিāϜ āĻšā§ŸেāĻ›ে.! āϝা āφāĻĒāύাāϰ āϚাāĻ•āϰিāϰ āĻĒ্āϰāϏ্āϤুāϤি āĻļāϤāĻ­াāĻ— āϏāĻŽ্āĻĒূāϰ্āĻŖ āĻ•āϰাāϰ āϜāύ্āϝ āϝāĻĨেāώ্āϟ। āϏ্āĻŦāϞ্āĻĒ āϏāĻŽā§Ÿে āϏāϰ্āĻŦাāϧিāĻ• āĻĒ্āϰāϏ্āϤুāϤিāϰ āĻļ্āϰেāώ্āĻ  āϏāĻšা⧟āĻ•.!

āĻĻুāϰ্āĻĻাāύ্āϤ āĻĢিāϚাāϰāϏāĻŽূāĻš āĻĒেāϤে āĻ…্āϝাāĻĒ āφāĻĒāĻĄেāϟ āĻ•āϰুāύ 🔎 āĻĒ্āϞেāϏ্āϟোāϰ āϏাāϰ্āϚ 'UJS' āĻŦা app.ebook.com.bd


📖 āĻ—āĻĄ় āύিāϰ্āĻŖāϝ় 

❏ āĻ—āĻĄ় = āϰাāĻļি āϏāĻŽāώ্āϟি /āϰাāĻļি āϏংāĻ–্āϝা

❏ āϰাāĻļিāϰ āϏāĻŽāώ্āϟি = āĻ—āĻĄ় ⨉ āϰাāĻļিāϰ āϏংāĻ–্āϝা

❏ āϰাāĻļিāϰ āϏংāĻ–্āϝা = āϰাāĻļিāϰ āϏāĻŽāώ্āϟি ÷ āĻ—āĻĄ়

❏ āφāϝ়েāϰ āĻ—āĻĄ় = āĻŽোāϟ āφāϝ়েāϰ āĻĒāϰিāĻŽাāĻŖ / āĻŽোāϟ āϞোāĻ•েāϰ āϏংāĻ–্āϝা

❏ āϏংāĻ–্āϝাāϰ āĻ—āĻĄ় = āϏংāĻ–্āϝাāĻ—ুāϞোāϰ āϝোāĻ—āĻĢāϞ /āϏংāĻ–্āϝাāϰ āĻĒāϰিāĻŽাāύ āĻŦা āϏংāĻ–্āϝা

❏ āĻ•্āϰāĻŽিāĻ• āϧাāϰাāϰ āĻ—āĻĄ় = (āĻļেāώ āĻĒāĻĻ +ā§§āĻŽ āĻĒāĻĻ )  / 2


📚 ⧍ āϞāĻ•্āώাāϧিāĻ• āĻĒ্āϰāĻļ্āύেāϰ āĻĢ্āϰি āĻ…্āϝাāĻĒ.!🔎āϏাāϰ্āϚ UJS ➺ app.ebook.com.bd


📖 āϏুāĻĻāĻ•āώাāϰ āĻĒāϰিāĻŽাāύ āύিāϰ্āύāϝ়েāϰ āϏূāϤ্āϰাāĻŦāϞী

❏ āϏুāĻĻ = (āϏুāĻĻেāϰ āĻšাāϰ ⨉ āφāϏāϞ ⨉ āϏāĻŽāϝ়) / ā§§ā§Ļā§Ļ

❏ āϏāĻŽāϝ় = (100 ⨉ āϏুāĻĻ) / (āφāϏāϞ ⨉ āϏুāĻĻেāϰ āĻšাāϰ)

❏ āϏুāĻĻেāϰ āĻšাāϰ = (100 ⨉ āϏুāĻĻ) / (āφāϏāϞ ⨉ āϏāĻŽāϝ়)

❏ āφāϏāϞ = (100 ⨉ āϏুāĻĻ) / (āϏāĻŽāϝ় ⨉ āϏুāĻĻেāϰ āĻšাāϰ)

❏ āφāϏāϞ = {100 ⨉ (āϏুāĻĻ – āĻŽূāϞ)} / (100+āϏুāĻĻেāϰ āĻšাāϰ ⨉ āϏāĻŽāϝ় )

❏ āϏুāĻĻাāϏāϞ = āφāϏāϞ + āϏুāĻĻ

❏ āϏুāĻĻাāϏāϞ = āφāϏāϞ ⨉ (1+ āϏুāĻĻেāϰ āĻšাāϰ) ⨉ āϏāĻŽāϝ় |[āϚāĻ•্āϰāĻŦৃāĻĻ্āϧি āϏুāĻĻেāϰ āĻ•্āώেāϤ্āϰে]।

🎁 āĻ…āϏংāĻ–্āϝ āύিāϤ্āϝ-āύāϤুāύ āϚāĻŽāĻ•āĻĒ্āϰāĻĻ āĻĢিāϚাāϰ āύি⧟ে āĻĒুāϰোāĻĒুāϰি āύāϤুāύ āĻāĻ•্āϏāĻĒেāϰি⧟েāύ্āϏে UJS āĻ…্āϝাāĻĒেāϰ āϏ্āϟ্āϝাāĻŦāϞ āĻ“ āϏ্āĻŦ⧟ংāϏāĻŽ্āĻĒূāϰ্āĻŖ āĻ­াāϰ্āϏāύ~ā§­.ā§­.ā§­ āϰিāϞিāϜ āĻšā§ŸেāĻ›ে.! āϝা āφāĻĒāύাāϰ āϚাāĻ•āϰিāϰ āĻĒ্āϰāϏ্āϤুāϤি āĻļāϤāĻ­াāĻ— āϏāĻŽ্āĻĒূāϰ্āĻŖ āĻ•āϰাāϰ āϜāύ্āϝ āϝāĻĨেāώ্āϟ। āϏ্āĻŦāϞ্āĻĒ āϏāĻŽā§Ÿে āϏāϰ্āĻŦাāϧিāĻ• āĻĒ্āϰāϏ্āϤুāϤিāϰ āĻļ্āϰেāώ্āĻ  āϏāĻšা⧟āĻ•.!

āĻĻুāϰ্āĻĻাāύ্āϤ āĻĢিāϚাāϰāϏāĻŽূāĻš āĻĒেāϤে āĻ…্āϝাāĻĒ āφāĻĒāĻĄেāϟ āĻ•āϰুāύ 🔎 āĻĒ্āϞেāϏ্āϟোāϰ āϏাāϰ্āϚ 'UJS' āĻŦা app.ebook.com.bd


📖 āϞাāĻ­ – āĻ•্āώāϤিāϰ āĻāĻŦং āĻ•্āϰāϝ় – āĻŦিāĻ•্āϰāϝ়েāϰ āϏূāϤ্āϰাāĻŦāϞী

❏ āϞাāĻ­ = āĻŦিāĻ•্āϰāϝ়āĻŽূāϞ্āϝ – āĻ•্āϰāϝ়āĻŽূāϞ্āϝ

❏ āĻ•্āώāϤি = āĻ•্āϰāϝ়āĻŽূāϞ্āϝ – āĻŦিāĻ•্āϰāϝ়āĻŽূāϞ্āϝ

❏ āĻ•্āϰāϝ়āĻŽূāϞ্āϝ = āĻŦিāĻ•্āϰāϝ়āĻŽূāϞ্āϝ – āϞাāĻ­

❏ āĻ…āĻĨāĻŦা

❏ āĻ•্āϰāϝ়āĻŽূāϞ্āϝ = āĻŦিāĻ•্āϰāϝ়āĻŽূāϞ্āϝ + āĻ•্āώāϤি

❏ āĻŦিāĻ•্āϰāϝ়āĻŽূāϞ্āϝ = āĻ•্āϰāϝ়āĻŽূāϞ্āϝ + āϞাāĻ­

❏ āĻ…āĻĨāĻŦা

❏ āĻŦিāĻ•্āϰāϝ়āĻŽূāϞ্āϝ = āĻ•্āϰāϝ়āĻŽূāϞ্āϝ – āĻ•্āώāϤি


📖 1 – 100 āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝাāĻŽāύে āϰাāĻ–াāϰ āϏāĻšāϜ āωāĻĒাāϝ়ঃ

❏ āĻļāϰ্āϟāĻ•াāϟ : 4 4  2 2  3 2 2  3 2 1

❏ 1āĻĨেāĻ•ে100āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা = 25āϟি

❏ 1āĻĨেāĻ•ে10āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা = 4āϟি 2,3,5,7

❏ 11āĻĨেāĻ•ে20āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা = 4āϟি 11,13,17,19

❏ 21āĻĨেāĻ•ে30āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা = 2āϟি 23,29

❏ 31āĻĨেāĻ•ে40āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা = 2āϟি 31,37

❏ 41āĻĨেāĻ•ে50āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা = 3āϟি 41,43,47

❏ 51āĻĨেāĻ•ে 60āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা = 2āϟি 53,59

❏ 61āĻĨেāĻ•ে70āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা = 2āϟি 61,67

❏ 71āĻĨেāĻ•ে80 āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা = 3āϟি 71,73,79

❏ 81āĻĨেāĻ•ে 90āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা = 2āϟি 83,89

❏ 91āĻĨেāĻ•ে100āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা = 1āϟি 97


📖 1 – 100 āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝা 25 āϟিঃ 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97

❏ 1 – 100āĻĒāϰ্āϝāύ্āϤ āĻŽৌāϞিāĻ• āϏংāĻ–্āϝাāϰ āϝোāĻ—āĻĢāϞ 1060


📖 āĻ•োāύ āĻ•িāĻ›ুāϰ āĻ—āϤিāĻŦেāĻ—

❏ āĻ—āϤিāĻŦেāĻ— = āĻ…āϤিāĻ•্āϰাāύ্āϤ āĻĻূāϰāϤ্āĻŦ/āϏāĻŽāϝ়

❏ āĻ…āϤিāĻ•্āϰাāύ্āϤ āĻĻূāϰāϤ্āĻŦ = āĻ—āϤিāĻŦেāĻ— ⨉ āϏāĻŽāϝ়

❏ āϏāĻŽāϝ় = āĻŽোāϟ āĻĻূāϰāϤ্āĻŦ/āĻŦেāĻ—

❏ āϏ্āϰোāϤেāϰ āĻ…āύুāĻ•ূāϞে āύৌāĻ•াāϰ āĻ•াāϰ্āϝāĻ•āϰী āĻ—āϤিāĻŦেāĻ— = āύৌāĻ•াāϰ āĻĒ্āϰāĻ•ৃāϤ āĻ—āϤিāĻŦেāĻ— + āϏ্āϰোāϤেāϰ āĻ—āϤিāĻŦেāĻ—।

❏ āϏ্āϰোāϤেāϰ āĻĒ্āϰāϤিāĻ•ূāϞে āύৌāĻ•াāϰ āĻ•াāϰ্āϝāĻ•āϰী āĻ—āϤিāĻŦেāĻ— = āύৌāĻ•াāϰ āĻĒ্āϰāĻ•ৃāϤ āĻ—āϤিāĻŦেāĻ— – āϏ্āϰোāϤেāϰ āĻ—āϤিāĻŦেāĻ—

📚 ⧍ āϞāĻ•্āώাāϧিāĻ• āĻĒ্āϰāĻļ্āύেāϰ āĻĢ্āϰি āĻ…্āϝাāĻĒ.!🔎āϏাāϰ্āϚ UJS ➺ app.ebook.com.bd


📖 āϏāϰāϞ āϏুāĻĻ

❏ āϝāĻĻি āφāϏāϞ = P, āϏāĻŽāϝ় = T, āϏুāĻĻেāϰ āĻšাāϰ = R, āϏুāĻĻ – āφāϏāϞ = c āĻšāϝ়, āϤাāĻšāϞে

❏ āϏুāĻĻেāϰ āĻĒāϰিāĻŽাāĻŖ = PRT/100

❏ āφāϏāϞ = {100 ⨉ āϏুāĻĻ – āφāϏāϞ(c)}/(100+TR)


📖 āϏāĻŽাāύ্āϤāϰ āϧাāϰাāϰ āĻ•্āϰāĻŽিāĻ• āϏংāĻ–্āϝাāϰ āϝোāĻ—āĻĢāϞ – 

❏ (āϝāĻ–āύ āϏংāĻ–্āϝাāϟি1 āĻĨেāĻ•ে āĻļুāϰু)1+2+3+4+……+n āĻšāϞে āĻāϰূāĻĒ āϧাāϰাāϰ āϏāĻŽāώ্āϟি = [n(n+1)/2] 

❏ n = āĻļেāώ āϏংāĻ–্āϝা āĻŦা āĻĒāĻĻ āϏংāĻ–্āϝা s = āϝোāĻ—āĻĢāϞ

❏ āϏāĻŽাāύ্āϤāϰ āϧাāϰাāϰ āĻŦāϰ্āĻ— āϝোāĻ— āĻĒāĻĻ্āϧāϤিāϰ āĻ•্āώেāϤ্āϰে(āϝāĻ–āύ 1² + 2²+ 3² + 4²…….. +n²), –  āĻĒ্āϰāĻĨāĻŽ n āĻĒāĻĻেāϰ āĻŦāϰ্āĻ—েāϰ āϏāĻŽāώ্āϟি  S = [n(n+1)2n+1)/6]

❏ āϏāĻŽাāύ্āϤāϰ āϧাāϰাāϰ āϘāύāϝোāĻ— āĻĒāĻĻ্āϧāϤিāϰ āĻ•্āώেāϤ্āϰে (āϝāĻ–āύ 1³+2³+3³+………….+n³)–  āĻĒ্āϰāĻĨāĻŽ n āĻĒāĻĻেāϰ āϘāύেāϰ āϏāĻŽāώ্āϟি S = [n(n+1)/2] ²

❏ āĻĒāĻĻ āϏংāĻ–্āϝা āĻ“ āĻĒāĻĻ āϏংāĻ–্āϝাāϰ āϏāĻŽāώ্āϟি āύিāϰ্āύāϝ়েāϰ āĻ•্āώেāϤ্āϰেঃ

❏ āĻĒāĻĻ āϏংāĻ–্āϝা N = [(āĻļেāώ āĻĒāĻĻ – āĻĒ্āϰāĻĨāĻŽ āĻĒāĻĻ)/āĻĒ্āϰāϤি āĻĒāĻĻে āĻŦৃāĻĻ্āϧি] +1

❏  n āϤāĻŽ āĻĒāĻĻ = c + (n – 1)d  āĻāĻ–াāύে, n = āĻĒāĻĻāϏংāĻ–্āϝা, c = 1āĻŽ āĻĒāĻĻ, d = āϏাāϧাāϰāĻŖ āĻ…āύ্āϤāϰ

❏ āϏāĻŽাāύ্āϤāϰ āϧাāϰাāϰ āĻ•্āϰāĻŽিāĻ• āĻŦিāϜোāĻĄ় āϏংāĻ–্āϝাāϰ āϝোāĻ—āĻĢāϞ – S = M² āĻāĻ–াāύে,M = āĻŽāϧ্āϝেāĻŽা = (1āĻŽ āϏংāĻ–্āϝা+āĻļেāώ āϏংāĻ–্āϝা)/2

📚 ⧍ āϞāĻ•্āώাāϧিāĻ• āĻĒ্āϰāĻļ্āύেāϰ āĻĢ্āϰি āĻ…্āϝাāĻĒ.!🔎āϏাāϰ্āϚ UJS ➺ app.ebook.com.bd


📖 āĻŦāϰ্āĻ—

❏ (1)² = 1, (11)² = 121, (111)² = 12321, (1111)² = 1234321, (11111)² = 123454321

āύিāϝ়āĻŽ – āϝāϤāĻ—ুāϞো 1 āĻĒাāĻļাāĻĒাāĻļি āύিāϝ়ে āĻŦāϰ্āĻ— āĻ•āϰা āĻšāĻŦে, āĻŦāϰ্āĻ— āĻĢāϞে 1 āĻĨেāĻ•ে āĻļুāϰু āĻ•āϰে āĻĒāϰ āĻĒāϰ āϏেāχ āϏংāĻ–্āϝা āĻĒāϰ্āϝāύ্āϤ āϞিāĻ–āϤে āĻšāĻŦে āĻāĻŦং āϤাāϰāĻĒāϰ āϏেāχ āϏংāĻ–্āϝাāϰ āĻĒāϰ āĻĨেāĻ•ে āĻ…āϧঃāĻ•্āϰāĻŽে āĻĒāϰāĻĒāϰ āϏংāĻ–্āϝাāĻ—ুāϞো āϞিāĻ–ে 1 āϏংāĻ–্āϝাāϝ় āĻļেāώ āĻ•āϰāϤে āĻšāĻŦে।

❏ (3)² = 9, (33)² = 1089, (333)² = 110889, (3333)² = 11108889, (33333)² = 1111088889

āϝāϤāĻ—ুāϞি 3 āĻĒাāĻļাāĻĒাāĻļি āύিāϝ়ে āĻŦāϰ্āĻ— āĻ•āϰা āĻšāĻŦে, āĻŦāϰ্āĻ— āĻĢāϞে āĻāĻ•āĻ•েāϰ āϘāϰে 9 āĻāĻŦং 9 āĻāϰ āĻŦাঁāĻĻিāĻ•ে āϤাāϰ āϚেāϝ়ে (āϝāϤāĻ—ুāϞো 3 āĻĨাāĻ•āĻŦে) āĻāĻ•āϟি āĻ•āĻŽ āϏংāĻ–্āϝāĻ• 8, āϤাāϰ āĻĒāϰ āĻŦাঁāĻĻিāĻ•ে āĻāĻ•āϟি 0 āĻāĻŦং āĻŦাঁāĻĻিāĻ•ে 8 āĻāϰ āϏāĻŽāϏংāĻ–্āϝāĻ• 1 āĻŦāϏāĻŦে।

❏ (6)² = 36,(66)² = 4356,(666)² = 443556,(6666)² = 44435556,(66666)² = 4444355556

āϝāϤāĻ—ুāϞি 6 āĻĒাāĻļাāĻĒাāĻļি āύিāϝ়ে āĻŦāϰ্āĻ— āĻ•āϰা āĻšāĻŦে, āĻŦāϰ্āĻ— āĻĢāϞে āĻāĻ•āĻ•েāϰ āϘāϰে 6 āĻāĻŦং 6 āĻāϰ āĻŦাঁāĻĻিāĻ•ে āϤাāϰ āϚেāϝ়ে (āϝāϤāĻ—ুāϞো 6 āĻĨাāĻ•āĻŦে) āĻāĻ•āϟি āĻ•āĻŽ āϏংāĻ–্āϝāĻ• 5, āϤাāϰ āĻĒāϰ āĻŦাঁāĻĻিāĻ•ে āĻāĻ•āϟি 3 āĻāĻŦং āĻŦাঁāĻĻিāĻ•ে 5 āĻāϰ āϏāĻŽāϏংāĻ–্āϝāĻ• 4 āĻŦāϏāĻŦে।

❏ (9)² = 81,(99)² = 9801,(999)² = 998001,(9999)² = 99980001,(99999)² = 9999800001

āϝāϤāĻ—ুāϞি 9 āĻĒাāĻļাāĻĒাāĻļি āύিāϝ়ে āĻŦāϰ্āĻ— āĻ•āϰা āĻšāĻŦে, āĻŦāϰ্āĻ— āĻĢāϞে āĻāĻ•āĻ•েāϰ āϘāϰে 1 āĻāĻŦং 1 āĻāϰ āĻŦাঁāĻĻিāĻ•ে āϤাāϰ āϚেāϝ়ে (āϝāϤāĻ—ুāϞো 9 āĻĨাāĻ•āĻŦে) āĻāĻ•āϟি āĻ•āĻŽ āϏংāĻ–্āϝāĻ• 0, āϤাāϰ āĻĒāϰ āĻŦাঁāĻĻিāĻ•ে āĻāĻ•āϟি 8 āĻāĻŦং āĻŦাঁāĻĻিāĻ•ে 0 āĻāϰ āϏāĻŽāϏংāĻ–্āϝāĻ• 9 āĻŦāϏāĻŦে।


📖 āϜāύāĻ•

❏ Numerology (āϏংāĻ–্āϝাāϤāϤ্āϤ্āĻŦ) – Pythagoras(āĻĒিāĻĨাāĻ—োāϰাāϏ)

❏ Geometry(āϜ্āϝাāĻŽিāϤি) – Euclid(āχāωāĻ•্āϞিāĻĄ)

❏ calculus(āĻ•্āϝাāϞāĻ•ুāϞাāϏ) – Newton(āύিāωāϟāύ)

❏ Matrixđ‘Ĩ(āĻŽ্āϝাāϟ্āϰিāĻ•্āϏ) – crthur ccyley(āĻ…āϰ্āĻĨাāϰ āĻ•্āϝাāϞে)

❏ Trigonometry(āϤ্āϰিāĻ•োāĻŖāĻŽিāϤি)Hippcrchus(āĻšিāĻĒ্āĻĒাāϰāϚাāϏ)

❏ arithmetic(āĻĒাāϟিāĻ—āĻŖিāϤ) brchmcguptc(āĻŦ্āϰāĻš্āĻŽāĻ—ুāĻĒ্āϤ)

❏ algebra(āĻŦীāϜāĻ—āĻŖিāϤ) – Muhcmmcd ibn Musc cl – Khwcrizmi(āĻŽোāĻšাāĻŽ্āĻŽāĻĻ āĻŽুāϏা āφāϞ āĻ–াāϰিāϜāĻŽী)

❏ Logarithm(āϞāĻ—াāϰিāĻĻāĻŽ) – John Ncpier(āϜāύ āύেāĻĒিāϝ়াāϰ)

❏ Set theory(āϏেāϟ āϤāϤ্āϤ্āĻŦ) – George ccntor(āϜāϰ্āϜ āĻ•্āϝাāύ্āϟāϰ)

❏ Zero(āĻļূāύ্āϝ) – brchmcguptc(āĻŦ্āϰāĻš্āĻŽāĻ—ুāĻĒ্āϤ)

📚 ⧍ āϞāĻ•্āώাāϧিāĻ• āĻĒ্āϰāĻļ্āύেāϰ āĻĢ্āϰি āĻ…্āϝাāĻĒ.!🔎āϏাāϰ্āϚ UJS ➺ app.ebook.com.bd


📖 āϜোāĻĄ় āϏংāĻ–্āϝা āĻŦিāϜোāĻĄ় āϏংāĻ–্āϝা

❏ āϜোāĻĄ় āϏংāĻ–্āϝা + āϜোāĻĄ় āϏংāĻ–্āϝা = āϜোāĻĄ় āϏংāĻ–্āϝা।

❏ āϜোāĻĄ় āϏংāĻ–্āϝা + āĻŦিāϜোāĻĄ় āϏংāĻ–্āϝা = āĻŦিāϜোāĻĄ় āϏংāĻ–্āϝা।

❏ āĻŦিāϜোāĻĄ় āϏংāĻ–্āϝা + āĻŦিāϜোāĻĄ় āϏংāĻ–্āϝা = āϜোāĻĄ় āϏংāĻ–্āϝা।

❏ āϜোāĻĄ় āϏংāĻ–্āϝা ⨉ āϜোāĻĄ় āϏংāĻ–্āϝা = āϜোāĻĄ় āϏংāĻ–্āϝা।

❏ āϜোāĻĄ় āϏংāĻ–্āϝা ⨉ āĻŦিāϜোāĻĄ় āϏংāĻ–্āϝা = āϜোāĻĄ় āϏংāĻ–্āϝা।

❏ āĻŦিāϜোāĻĄ় āϏংāĻ–্āϝা ⨉ āĻŦিāϜোāĻĄ় āϏংāĻ–্āϝা = āĻŦিāϜোāĻĄ় āϏংāĻ–্āϝা।


📝 āχāύ্āϟাāϰāύেāϟ āĻšāϤে āϏংāĻ—ৃāĻšীāϤ 

∽∽∽∽»⏵ujs app «∽∽∽∽

📚 āϏāĻŽ্āĻĒূāϰ্āĻŖ āĻ…āĻĢāϞাāχāύে.! ā§Š āϞāĻ•্āώাāϧিāĻ• āĻĒ্āϰāĻļ্āύেāϰ āϏ্āĻŦ⧟ংāϏāĻŽ্āĻĒূāϰ্āĻŖ āϜāĻŦ āϏāϞিāωāĻļāύ āĻ…্āϝাāĻĒ .!

‘𝐔đĨ𝐭đĸđĻ𝐚𝐭𝐞 𝐉𝐨𝐛 𝐒𝐨đĨ𝐮𝐭đĸ𝐨𝐧đŦ ~ 𝐔𝐉𝐒’ App!āφāĻĒāύাāϰ āϏ্āĻŦāĻĒ্āύāĻĒূāϰāĻŖেāϰ āĻļ্āϰেāώ্āĻ  āϏāĻšা⧟āĻ•.!

▣ āϜāĻŦ āĻŦা āĻ­āϰ্āϤি āĻĒ্āϰāϏ্āϤুāϤিāϰ āϜāύ্āϝ āĻ…āĻšেāϤুāĻ• āĻ…āύেāĻ• āĻŦāχ āĻ•িāύে āϟাāĻ•া āĻ…āĻĒāϚ⧟ āĻ•āϰাāϰ āφāĻ—ে...! 

▣ āϏ্āϰেāĻĢ āĻāĻ•āϟু āĻ•ৌāϤূāĻšāϞ āύি⧟ে āĻšāϞেāĻ“ Ultimate Job Solutions (UJS) āĻ…্āϝাāĻĒāϟা āĻ…āύ্āϤāϤ āĻāĻ•āĻŦাāϰ āχāύ্āϏāϟāϞ āĻ•āϰে āĻ•িāĻ›ু āϏāĻŽā§Ÿ āĻĻেāĻ–ুāύ! āφāĻĒāύাāĻ•ে āĻ•োāύ āĻĒ্āϰāĻ•াāϰ āϞāĻ—āχāύ āĻŦা āĻĒেāĻŽেāύ্āϟ āĻ•āϰāϤে āĻšāĻŦে āύা āϜাāϏ্āϟ āχāωāϜ āĻ•āϰে āĻĻেāĻ–ুāύ ! 

▣ ā§Š,ā§Ļā§Ļ,ā§Ļā§Ļā§Ļ+ āĻĒ্āϰāĻļ্āύেāϰ āύিāϰ্āĻ­āϰāϝোāĻ—্āϝ āĻŦ্āϝাāĻ–্āϝাāϏāĻš āĻĒ্āϰāĻļ্āύāĻŦ্āϝাংāĻ•! āφāύāϞিāĻŽিāϟেāĻĄ āϏ্āĻŦ⧟ংāĻ•্āϰি⧟ āϏুāĻĒāϰিāĻ•āϞ্āĻĒিāϤ āĻŽāĻĄেāϞ āϟেāϏ্āϟ, ā§Šā§Ļā§Ļ+ āϜāĻŦ āχāĻŦুāĻ•, āϞেāĻ•āϚাāϰ āύোāϟ āϏāĻŽ্āĻŦāϞিāϤ, āϏāĻ•āϞ āϚাāĻ•āϰিāϰ āύি⧟োāĻ— āĻĒāϰীāĻ•্āώাāϰ āϏāϰ্āĻŦোāϚ্āϚ āĻ“ āĻĒāϰিāĻĒূāϰ্āĻŖ āĻĒ্āϰāϏ্āϤুāϤিāϰ āϏ্āĻŽাāϰ্āϟ AI āĻĒ্āϰāϝুāĻ•্āϤিāϰ āĻ•āĻŽāĻĒ্āϞিāϟ āϜāĻŦ āϏāϞিāωāĻļāύ āĻ…্āϝাāĻĒ...


Comments

Popular posts from this blog

HSC English First Paper | Unit: 1, Lesson: 1 | People or Institutions Making History | Nelson Mandela, from Apartheid Fighter to President

Comprehension

Class 6, poem "Holding Hands"